簡易檢索 / 詳目顯示

研究生: 蘇星翰
Hsing-Han Su
論文名稱: 膽管支架雷射切割後製程的改善與探討
Improvement and Discussion of Post Laser Cutting Process for Biliary Stent Fabrication
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳品銓
Pin-Chuan Chen
鄧秉敦
Ping-tun Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 不鏽鋼支架噴砂研磨電解拋光氣體擾動
外文關鍵詞: stainless steel stent, sandblasting, electropolishing, gas disturbance
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膽管支架是一種特定幾何的簍空型支架,主要用於治療膽管堵塞,其方法為使用膽道內視鏡經由口腔進入,到達十二指腸乳突開口處,透過內視鏡的器械將支架置入膽管內。常見的材料為具有良好的機械性與生物相容性的鎳鈦合金與316L不鏽鋼。
    此篇論文研究目的為膽管支架雷射切割後製程的改善與探討,主要分為探討噴砂加工及氣體擾動拋光最佳化兩部分。本研究先對支架噴砂加工進行探討,以氧化鋁磨粒搭配不同噴砂壓力,探討不同重量移除百分比對加工後支架品質的影響。研究過程以掃描式電子顯微鏡、綠光干涉儀及雷射共軛焦顯微鏡對其熔渣移除狀況、表面粗糙度及邊緣圓角化進行探討。由實驗結果得到在噴砂壓力60psig及重量移除百分比5%時,有最好的熔渣移除狀況與圓角化。
    其次是關於不鏽鋼膽管支架在電解拋光製程中整體線寬移除不均勻的問題作為改善目標,本實驗使用田口實驗設計探討氣體擾動的三項參數:圓孔與支架的距離、圓孔數量與出氣壓力,並用方差分析與F-分布表判斷出顯著因子。在氣體擾動電解拋光中得到當圓孔與支架的距離5.5cm、圓孔數16、氣體壓力18kPa時有最佳的拋光後支架結構寬度均勻度。在方差分析中得到壓力為最顯著因子。


    Biliary stent is a basket-shaped stent with a specific geometry. It is mainly used to treat biliary obstruction. The method is to use the biliary endoscopy to enter the mouth through the oral cavity, reach the opening of the duodenal mastoid, and place the stent into the bile duct through the instrument of the endoscope. Common materials are nickel-titanium alloy and 316L stainless steel due to their good mechanical and biocompatibility.
    The purpose of this study is to improve and discuss the post process of laser cutting of biliary stents. It is mainly divided into two parts: sandblasting and gas disturbance polishing optimization. This study first discusses the sandblasting process of the stent, using alumina abrasive grains with different blasting pressures, to explore the effect of different weight removal on the quality of the stent after processing. In the research process, the slag removal status, surface roughness and edge rounding were discussed with scanning electron microscope, green light interferometry and laser confocal microscope. From the experimental results, the best slag removal condition and rounding are obtained when the blasting pressure is 60 psig and the weight removal amount is 5%. The second is dealing with the problem of uneven removal of the overall line width of the stainless steel biliary stent in the electropolishing process. This experiment uses the Taguchi experimental design to explore three parameters of gas disturbance: the distance between the circular hole and the stent, the number of circular holes and the outgassing stress, and uses analysis of variance and F-distribution table to determine the significant factor. In the gas-disturbed electropolishing, when the three parameters are the distance between the round hole and the stent is 5.5 cm, the round hole number is 16, and the gas pressure is 18kPa, there is the best uniformity of the width of the stent structure after polishing. The results indicate the pressure is the most significant factor in the analysis of variance.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻回顧 4 2.1 材料性質 4 2.1.1 不鏽鋼材料文獻回顧 4 2.2 噴砂研磨原理及特性 5 2.2.1 噴砂方式 5 2.2.2 材料種類 5 2.2.3 噴砂研磨文獻回顧 7 2.3 酸洗原理及特性 9 2.3.1 酸洗文獻回顧 9 2.4 電解拋光原理及特性 11 2.4.1 電解拋光亮化作用 11 2.4.2 電解拋光I-V曲線圖 12 2.4.3 電解拋光文獻回顧 13 2.5氣體攪拌原理及特性 18 2.5.1氣體攪拌文獻回顧 18 第三章 研究方法 21 3.1 實驗設計及參數規劃 21 3.1.1 噴砂加工參數 24 3.1.2 電解拋光各項參數 24 3.1.3 氣體擾動驗證 25 3.1.4 氣體擾動電解拋光的操作參數探討 28 3.1.5 田口法實驗設計 31 3.2 實驗樣品製作 35 3.2.1 光纖雷射切割系統 35 3.2.2 實驗樣品材料 36 3.2.3 雷射切割實驗樣品 37 3.3 實驗設備介紹 39 3.3.1 噴砂設備介紹 39 3.3.2 酸洗設備介紹 40 3.3.3 電解拋光設備介紹 42 3.3.4 實驗分析量測儀器 44 第四章 實驗結果與討論 49 4.1噴砂加工 49 4.1.1 噴砂壓力對支架重量移除的速率影響 49 4.1.2 噴砂移除量之影響 50 4.1.3 噴砂壓力對研磨後表面之影響 53 4.1.4 噴砂壓力對支架圓角化之影響 55 4.2 電解拋光參數最佳化 60 4.2.1 電壓值對不鏽鋼合金表面的影響 60 4.2.2 重量移除百分比對表面的影響 63 4.3 氣體擾動電解拋光 66 4.3.1 氣體擾動驗證結果 67 4.3.2 氣體擾動實驗分析與討論 73 4.3.3 最佳化驗證 98 第五章 結論 102 5.1 結論 102 5.2 未來展望 104 參考文獻 105

    [1] 郭雨庭, 肝病防治學術基金會 好心肝會刊, 2018.
    [2] 工研院, 工研院2018年醫療器材年鑑, 2018.
    [3] 工研院, 工研院2019醫療器材年鑑, 2019.
    [4] J. Fu, Y. Su, Y.-X. Qin, Y. Zheng, Y. Wang, and D. J. B. Zhu, "Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc," Biomaterials, vol. 230, p. 119641, 2020.
    [5] A. Raykowski, M. Hader, B. Maragno, and J. J. W. Spelt, "Blast cleaning of gas turbine components: deposit removal and substrate deformation," vol. 249, no. 1-2, pp. 126-131, 2001.
    [6] X. Li, J. Ye, H. Zhang, T. Feng, J. Chen, and X. J. A. S. S. Hu, "Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel," Applied Surface Science, vol. 412, pp. 366-373, 2017.
    [7] X. Jiang et al., "Enhancement of fatigue and corrosion properties of pure Ti by sandblasting," Materials Science and Engineering, vol. 429, no. 1-2, pp. 30-35, 2006.
    [8] D. Vojtěch, J. Fojt, L. Joska, P. J. S. Novák, and C. Technology, "Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior," Surface and Coatings Technology, vol. 204, no. 23, pp. 3895-3901, 2010.
    [9] C. Zheng, F. Nie, Y. Zheng, Y. Cheng, S. Wei, and R. J. A. S. S. Valiev, "Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface," Applied Surface Science, vol. 257, no. 13, pp. 5634-5640, 2011.
    [10] S. Geng, J. Sun, L. J. M. Guo, and Design, "Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel," Materials & Design, vol. 88, pp. 1-7, 2015.
    [11] 陳裕豐, "高潔淨閥件之流道表面處理-電解拋光(EP)技術," no. 機械工業雜誌, pp. 230-240, 1999.
    [12] W. Han, F. J. I. J. o. M. T. Fang, and Manufacture, "Fundamental aspects and recent developments in electropolishing," International Journal of Machine Tools and Manufacture, vol. 139, pp. 1-23, 2019.
    [13] E. Kassab et al., "On the electropolishing of NiTi braided stents–challenges and solutions: Über das Elektropolieren von geflochtenen NiTi‐Stents–Herausforderungen und Lösungen," Materialwissenschaft und Werkstofftechnik, vol. 45, no. 10, pp. 920-929, 2014.
    [14] P. Lopez-Ruiz, M. Garcia-Blanco, G. Vara, I. Fernández-Pariente, M. Guagliano, and S. J. A. S. S. Bagherifard, "Obtaining tailored surface characteristics by combining shot peening and electropolishing on 316L stainless steel," Applied Surface Science, vol. 492, pp. 1-7, 2019.
    [15] W. Han and F. J. J. o. M. P. T. Fang, "Two-step electropolishing of 316L stainless steel in a sulfuric acid-free electrolyte," Journal of Materials Processing Technology, vol. 279, p. 116558, 2020.
    [16] L. Coelho et al., "Mechanical and corrosion characterization of industrially treated 316L stainless steel surfaces," Surface and Coatings Technology, vol. 382, p. 125175, 2020.
    [17] 黃昱翔, "取栓支架雷射切割後製程的改善與探討," 碩士, 國立台灣科技大學, 2018.
    [18] 曾暐凱, "生醫支架雷射加工後處理製程改良," 碩士, 國立台灣科技大學, 2017.
    [19] P. Gajjar et al., "Physical study of the impact of injector design on mixing, convection and turbulence in ladle metallurgy," vol. 22, no. 2, pp. 538-547, 2019.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE