簡易檢索 / 詳目顯示

研究生: 曾暐凱
Wei-Kai - Zeng
論文名稱: 生醫支架雷射加工後處理製程改良
A Study to Improve the Post Laser Machining Process for Biomedical Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鍾俊輝
Chun-Hui Chung
鄭逸琳
none
張以全
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 106
中文關鍵詞: 不鏽鋼支架鎳鈦支架流體研磨氣體擾動電解拋光
外文關鍵詞: stainless steel stent, nitinol stent, fluid grinding, gas stirred, electropolishing
相關次數: 點閱:263下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫支架是一種中空管狀結構的醫療器材,主要被用於治療心血管疾病。種類主要有自我擴張式和氣球擴張型兩種,常見材料為鎳鈦合金和316L不鏽鋼。此二材料並皆具有良好的生物相容性。
    此篇論文研究是將以光纖雷射所加工後的支架,探討其後處理製程並進行優化改良。主要針對研磨及電解拋光兩部分。首先是為改善不鏽鋼血管支架噴砂問題而新開發的漿體噴射研磨製程中其流場不穩定問題作為改善目標。此將透過泵浦取代氣體噴射作為動力源,以達到研磨漿體輸出穩定化,並以原製程參數為基礎再深入研究粒徑尺寸對表面形貌變化及邊緣圓角化的影響性;其次是關於鎳鈦合金膽管支架在電解拋光製程中支架拋光後線寬不均勻的問題作為改善目標。實驗中發現該問題為磁石旋轉擾動所造成,有鑑於此自行設計一氣體擾動系統用於電解拋光中改變電解液流動方式以改善拋光的不均勻性。並探討底部出氣位置、氣壓、電壓、移除量之最佳參數。由實驗結果得到使用中粒徑(平均82.5m)進行研磨的表面品質最佳並具有良好圓角化效果。在電解拋光中氣體擾動方式能減少支架拋光後的不均勻性,並在電壓25V、移除率40%和氣壓16kPa為最佳參數。


    Biomedical stent is a medical device which is a metal tube and can be inserted into a vascular to relieve narrowing problem. Two types of stent can be distinguished, including balloon-dilatation type and self-expandable type. The most common materials are nickel-titanium alloy, called Nitinol, and 316L stainless steel. Both are high biocompatible.
    The goal of this paper is to optimize the post laser machining treatment for biomedical stents. The experiment is divided into two main parts, slurry jet grinding (SJG) and electropolishing. Because of unsteadiness in previous slurry jet grinding study, the first part is changing the slurry driving-source from gas flow into a liquid pump to improve stability of fluid. The new slurry jet grinding experiment is based on previous process parameters and further to investigate the influences of grain size. In the past, the structure of the NiTi stent is uneven after electropolishing if the length of stent is long. Uneven structure may be due to the rotating magnetic stirrer in electropolishing tank. For the reason in the second part a self-designed gas stirred system is used in electropolishing tank and test if it can make whole stent uniformly. Several electropolishing parameters were investigated in this work to optimize the electropolishing process, including applied position of gas released, gas inlet pressure, voltage and total removed weight percentage. The results indicate slurry flow machining with middle grain size (82.5m) has better surface roughness and edge rounding effect. In the electropolishing study applied voltage 25V, 40% total removed weight percentage and pressure 16kPa can achieve good finished stent shape and surface quality.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 、緒論 1 1.1. 前言 1 1.2. 研究動機 3 1.3. 研究目的 4 1.4. 論文架構 8 第2章 、文獻回顧 9 2.1. 材料性質 9 2.2. 流體研磨原理及特性 10 2.2.1. 流體研磨文獻回顧 12 2.3. 噴砂原理及特性 15 2.3.1. 噴砂方式 16 2.3.2. 砂材種類 16 2.3.3. 噴砂技術文獻回顧 18 2.4. 酸洗原理及特性 20 2.4.1. 酸洗技術文獻回顧 21 2.5. 電解拋光原理及特性 22 2.5.1. 電解拋光亮化作用 23 2.5.2. 電解拋光I-V曲線圖 25 2.5.3. 電解拋光文獻回顧 27 2.6. 氣體擾動流場介紹分 31 2.6.1. 氣體擾動分析文獻回顧 31 第3章 、研究方法 33 3.1. 實驗設計及參數規 33 3.1.1. 漿體流動研磨加工參數 36 3.1.2. 電解拋光氣體擾動系統應用設計 37 3.1.3. 電解拋光各項參數 38 3.2. 實驗樣品製作 41 3.2.1. 光纖雷射切割系統 41 3.2.2. 實驗樣品材料 43 3.2.3. 雷射切割實驗樣品 44 3.3. 實驗設備介紹 46 3.3.1. 噴砂及研磨設備介紹 46 3.3.2. 酸洗設備介紹 48 3.3.3. 電解拋光設備介紹 48 3.3.4. 實驗分析量測儀 51 第4章 、實驗結果 54 4.1. 漿體流動研磨加工 54 4.1.1. 粒徑尺寸對重量移除速率之影響 54 4.1.2. 研磨移除量之影響 55 4.1.3. 粒徑尺寸對研磨後表面之影響 58 4.1.4. 漿體流動研磨和乾式噴砂之差異 67 4.1.5. 研磨後不鏽鋼支架電解拋光 68 4.2. 電解拋光擾動方式差異比較 69 4.2.1. 電解拋光輔以磁石旋轉擾動之影響 70 4.2.2. 底部出氣位置對支架電解拋光之影響 72 4.2.3. 電解拋光輔以底部進氣擾動之影響 74 4.3. 電解拋光參數最佳化 77 4.3.1. 電壓值對鎳鈦合金表面之影響 77 4.3.2. 重量移除百分比對鎳鈦合金表面之影響 81 4.3.3. 進氣氣壓值對鎳鈦合金支架表面之影響 84 第5章 、結論與未來展望 87 5.1. 結論 87 5.2. 未來展望 89 參考文獻 90

    [1] 施俊哲,「血管支架簡介」,財團法人台灣動脈關懷協會,2008。
    [2] 工業技術研究院,「2015醫療器材產業年鑑」,財團法人工業技術研究院產業經濟與趨勢研究中心, 6月,2015。
    [3] 宋信文,「生醫材料簡介」,生物產業技術概論,第二章,頁33-58,2003。
    [4] S.S. Kumar, S.S. Hiremath, “A Review on Abrasive Flow Machining (AFM)”, Procedia Technology,25, pp.1297-1304, 2016.
    [5] 張宗達,「磨料流動加工對微細流道精修表面研究」,碩士論文,國立中央大學機械工程研究所,2005。
    [6] M. R. Sankar, V. K. Jain, J. Ramkumar, “Abrasive flow machining (AFM): An overview”, Department of Mechanical Engineering, Indian Institute of Technology, pp.1-8, Kanpur, India, 2011.
    [7] T. R. Loveless, R. E. Williams, K. P. Rajurkar, “A study of the effects of abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology, 47(1), pp.133-151, 1994.
    [8] V. K. Jain, S. G. Adsul, “Experimental investigations into abrasive flow machining (AFM)” International Journal of Machine Tools and Manufacture, 40(7), pp.1003-1021, 2000.
    [9] S.M. Ravi, V. K. Jain, J. Ramkumar, and Y. M. Joshi, “Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process” International Journal of Machine Tools and Manufacture, 51: 947-57, 2011.
    [10] 王彗珊,「雷射加工心血管支架的後處理製程研究」,碩士論文,國立臺灣科技大學機械工程研究所,2015。
    [11] 劉紫煒,「生醫鎳鈦支架後處理方法之研究」,碩士論文,國立臺灣科技大學機械工程研究所,2014。
    [12] L. Hsueh, J. Newman, “Mass transfer and polarization at a rotating disk electrode”, Electrochimica Acta, 12.4, pp.429-438, 1967.
    [13] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications”, Vol. 2, Wiley, New York, 1980.
    [14] U. Gbureck, A. Masten, J. Probst, R. Thull, “Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers”, Materials Science and Engineering: C, 23(3), pp.461-465, 2003.
    [15] C.Y. Zheng, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z.Valiev, “Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface”, Applied Surface Science, Vol 257, pp.9086-9093, 2011.
    [16] F. Keady, B.P. Murphy, “Investigating the feasibility of using a grit blasting process to coat nitinol stents with hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 24(1), pp.97-103, 2013.
    [17] S.A. Shabalovskaya, J. Anderegg, F. Laab, P.A. Thiel, G. Rondell, “Surface conditions of nitinol wires, and as-cast alloys. The effect of chemical etching, aging in boiling water and heat treatment”, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 65B, 193-203, 2003.
    [18] B. Katona, E. Bognár, B. Berta, P. Nagy, K. Hirschberg, “Chemical etching of nitinol stents”, Acta of Bioengineering and Biomechanics, 15(4), pp.3-8, 2013.
    [19] R. Steegmueller, T. Fleckenstein, A. Schuessler, “Is electropolishing equal electropolishing? A comparison study of nitinol stents”, In Medical Device Materials III Proceedings of the Materials & Processes for Medical Devices Conference [held Nov 14–16, 2005, in Boston, MA, USA], Materials Park, OH, USA: ASM International, pp.163-168, 2006.
    [20] 賴建璋,「不鏽鋼表面電解拋光技術研究」,碩士論文,元智大學機械工程研究所,2002。
    [21] S.-J. Lee, Y.-H. Chen, J.-C Hung, “The investigation of surface morphology forming mechanisms in electropolishing process”, Int. J. Electrochem. Sci., 7, pp.12495-12506, 2012.
    [22] 陳裕豐,「高潔淨閥件之流道表面處理-電解拋光(EP)技術」,機械工業雜誌,198期,頁230-240,9月,1999。
    [23] 謝格列夫,「金屬的電拋光和化學拋光」,北京:科學出版社,1961。
    [24] G. H. Sedahmed, S.S. Iskander, I.A.S. Mansour, M.A. Fawzy, “Electropolishing of vertical copper cylinders in phosphoric acid under natural convection conditions”, Surface Technology, 11(1), pp.67-71, 1980.
    [25] C.L. Faust, “Electropolishing ΙΠ:The practical side, Metal Finishing”, pp.21-25, 1982.
    [26] C.L. Faust, “Electropolishing Π:The practical side Metal Finishing”, pp.59-63, 1982.
    [27] K.S. Raman, S. Murali, M. Ramachandra, K.S.S. Murthy, “Development of electropolishing techniques on metals and alloys”, Practical Metallography, Vol. 33, No. 7, pp.359-368, 1996.
    [28] H. Zhao, J. Van Humbeeck, I. De Scheerder, “Surface conditioning of niti and ta stents”, Progress in Biomedical Research, pp.439-448, 2001
    [29] G. H. Sedahmed, M.S. Abdo, M.A. Kamal, O.A. Fadaly, H.M. Osman, “Effect of gas sparging on the rate of mass transfer during electropolishing of vertical plates”, Chemical Engineering and Processing: Process Intensification, 40(3), pp.195-200, 2001.
    [30] G. H. Sedahmed, I. Nirdosh, “Electropolishing of Vertical Plates under Intensified Mass Transfer Conditions in a Gas Stirred, modified parallel plate reactor”, Chemical engineering & technology, 31(11), pp.1645-1650, 2008.
    [31] E. Kassab, A. Marquardt, L. Neelakantan, M. Frotscher, F. Schreiber, T. Gries, G. Eggeler, “On the electropolishing of NiTi braided stents–challenges and solutions”, Materialwissenschaft und Werkstofftechnik, 45(10), pp.920-929, 2014.
    [32] J.F. Domgin, P. Gardin, M. Brunet, “Experimental and numerical investigation of gas stirred ladles”, Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, 1999.
    [33] D.C. Guo, L. Gu, G.A. Irons, “Developments in modelling of gas injection and slag foaming”, Applied Mathematical Modelling, 26(2), pp.263-280,2002.
    [34] R. K. Jain, V. K. Jain, P. K. Kalra, “Modelling of abrasive flow machining process: a neural network approach”, Wear, 231(2), pp.242-248, 1999
    [35] R. K. Jain, V.K. Jain, P.M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process”, International Journal of Machine Tools and Manufacture, 39(12), pp.1903-1923, 1999.
    [36] Sanjay Shrivastava, “Method and Apparatus for Electropolishing Metallic Stents”, U.S. Patent 7,776,189 B2, Aug. 17, 2010.

    無法下載圖示 全文公開日期 2022/02/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE