簡易檢索 / 詳目顯示

研究生: 周炳樺
BING-HUA ZHOU
論文名稱: 同步磁阻電動機驅動系統反飽和控制器的研製
Design and Implementation of Anti-Windup Controllers for Synchronous Reluctance Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 反飽和同步磁阻電動機
外文關鍵詞: anti-windup, synchronous reluctance motor
相關次數: 點閱:198下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出兩種反飽和的方法,包括零電壓向量注入法及參考命令修正法,應用在同步磁阻驅動系統,以達到良好的暫態響應及加載響應。文中,首先討論同步磁阻電動機的結構、特性及數學模型。其次,介紹所提出的反飽和方法,此方法能提供低的超振量及快速的安定時間。相關的設計方法在文中說明。
本文使用TMS-320F-28335的數位信號處理器作為控制核心,執行所提出的兩種反飽和方法。實測結果證實本文所提方法的正確性及可行性。

關鍵詞:反飽和,同步磁阻電動機,數位訊號處理器。


The thesis proposes two anti-windup methods, including zero voltage vector injection method and reference command correction method, for a synchronous reluctance drive system to achieve good transient responses and load disturbance responses. In this thesis, first, the configuration, characteristics and mathematical model of the synchronous reluctance motor are discussed. Then, the proposed anti-windup methods are presented. The methods can provide lower overshoot and faster setting time when compared to the drive system without using anti-windup mechanism. The details are discussed in this thesis.
A digital signal processor TMS-320F-28335, is used as the control center to execute the proposed two anti-windup methods. Experimental results validate the correctness and feasibility of the proposed methods.

Key words: anti-windup, synchronous reluctance motor, digital signal processor.

摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 IX 符號索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的 5 1.4 大綱 6 第二章 同步磁阻電動機 7 2.1 簡介 7 2.2 結構及沿革 10 2.3 數學模式 13 第三章 飽和現象探討及改善策略 21 3.1 簡介 21 3.1.1 比例積分控制器 22 3.1.2 飽和現象 23 3.1.3 磁場導向控制 25 3.2 零電壓向量注入法 29 3.2.1簡介 29 3.2.2模糊控制 33 3.3 參考命令修正法 41 第四章 系統研製 51 4.1 簡介 51 4.2 硬體電路製作 52 4.2.1變頻器與驅動電路 52 4.2.2偵測電路 55 4.2.2.1電流偵測電路 55 4.2.2.2轉軸角/速度偵測電路 57 4.3 軟體程式設計 59 4.3.1簡介 59 4.3.2數位訊號處理器 60 4.3.3軟體程式 64 4.3.3.1主程式 64 4.3.3.2中斷服務主程式 66 第五章 實測結果 71 5.1 簡介 71 5.2 實測結果 74 第六章 結論與建議 103 參考文獻 104 作者簡介 108 授權書 109

[1] S. G. Kadwane, S. P. Vepa, B. M. Karan, and T. Ghose, “Converter based DC motor speed control using TMS320LF2407A DSK,” IEEE ICIEA-2006, May 2006.
[2] L. Z. Zong, L. F. Lin, and M. H. Rashid, “Speed nonlinear control of DC motor drive with field weakening,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 417-423, Mar/Apr. 2003.
[3] B. K. Bose, “Power Electronics and Motor Drives Recent Progress and Perspective,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 581-588, Feb. 2009.
[4] B. K. Bose, “Recent advances and applications of power electronics and motor drives-introduction and perspective,” IECON-2008, pp. 25-27, Nov. 2008.
[5] B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, “Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1108-1116, July 2004.
[6] A. Boglietti, A. Cavagnino, M. Pastorelli, and A. Vagati, “Experimental comparison of induction and synchronous reluctance motors performance,” IAS-2005, pp. 474-479, Oct. 2005.
[7] M. Comanescu and L. Xu, “An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors," IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 50-56, Feb. 2006.
[8] J. F. Fuchsloch, W. R. Finley, and R. W. Walter, “The next generation motor," IEEE Transactions on Industry Applications, vol. 14, no. 1, pp. 37-43, Jan/Feb. 2008.
[9] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine," IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 6-13, Jan. 2010.
[10] L. S. Xuefang, F. Morel, A. M. Llor, B. Allard, and J. M. Retif, “Implementation of hybrid control for motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1946-1952, Aug. 2007.
[11] F. Rodriguez, and A. Emadi, “A novel digital control technique for brushless DC motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2365-2373, Oct. 2007.
[12] A. Sathyan, N. Milivojevic, L. Y. Joo, M. Krishnamurthy, and A. Emadi, “An FPGA-based novel digital PWM control scheme for BLDC motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3040-3049, Aug. 2009.
[13] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1531-1537, July 2007.
[14] E.M. Rashad, T. S. Radwan, and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” IEEE IAS-2004, pp. 2411-2417, Oct. 2004.
[15] A. Consoli, G. Scarcella, G. Scelba, A. Testa, and D. A. Triolo, “Sensorless rotor position estimation in synchronous reluctance motors exploiting a flux deviation approach,” IEEE Transactions on Industrial Applications, vol. 43, no. 5, pp. 1266-1273, Sep./Oct. 2007.
[16] P. March, and M. C. Turner, “Anti-windup compensator designs for nonsalient permanent-magnet synchronous motor speed regulators,” IEEE Transactions on Industrial Applications, vol. 45, no. 5, pp. 1598-1609, Sep./Oct. 2009.
[17] S. H. Beon, “New antiwindup PI controller for variable-speed motor drives,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 445-450, June 1998.
[18] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1076-1082, July/Aug. 2004.
[19] J. Kolehmainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Transaction on Energy Conversion, vol. 25, no.2, pp. 450-456, June 2010.
[20] I. J. Bin, K. Wonho, K. Kwangsoo, J. C. Sung, C. J. Hak, L. Ju, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Transactions on Magnetics, vol. 45, no. 6, pp. 2803-2806, June 2004.
[21] G. Sturtzer, D. Flieller, and J. P. Louis, “Mathematical and experimental method to obtain the inverse modeling of nonsinusoidal and saturated synchronous reluctance motors,” IEEE Transactions on Energy conversion, vol. 18, no. 4, pp. 494-500, Dec. 2003.
[22] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
[23] T. H. Liu and H. H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IET Electric Power Applications, vol. 1, no. 5, pp. 815-824, Sep. 2007.
[24] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proceedings- Electric Power Applications, vol. 151, no. 6, pp. 711-724, Nov. 2004.
[25] C. A. Chen, H. K. Chiang, and B. R. Lin, “Current sensorless synchronous reluctance motor speed drive with the novel fuzzy sliding mode control,” IEEE ICIEA-2008, pp. 449-454, June 2008.
[26] C. Bohn, and D. P. Atherton, “An analysis package comparing PID anti-windup strategies” IEEE Control Systems, vol. 15, no. 2, pp. 34-40, Apr. 1995.
[27] A. Visioli, “Modified anti-windup scheme for PID controllers” IEE Proceedings Control Theory and Applications, vol. 150, no. 1, pp. 49-54, Jan. 2003.
[28] J. W. Choi, and S. C. Lee, “Antiwindup strategy for PI-type speed controller,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2039-2046, June 2009.
[29] T. J. E. Miller, “Switched Reluctance Motors and Their Control,” Magna Physics Publishing, 1993.
[30] J. P. Lecointe, R. Romary, J. F. Brudny, and M. McClelland, “Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 151, no. 6, pp. 725-733, Nov. 2004.

[31] E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati, “Position-sensorless control of the transverse-laminated synchronous reluctance motor,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1768-1776, Nov./Dec. 2001.
[32] Y. Q. Xiang and S. A. Nasar, “Estimation of rotor position and speed of a synchronous reluctance motor for servodrives,” IEE Proceedings -Electric Power Applications, vol. 142, no. 3, pp. 201- 205, May 1995.
[33] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximizing the saliency ratio of the synchronous reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 140, no. 4, pp. 249- 259, July 1993.
[34] M. J. Kamper, and A. F. Volsdhenk, “Effect of rotor dimensions and cross magnetisation on Ld and Lq inductances of reluctance synchronous machine with cageless flux barrier rotor,” IEE Proceedings-Electric Power Applications, vol. 141, no. 4, pp. 213- 220, July 1994.
[35] A. Fratta, G. P. Toglia, A. Vagati, and F. Villata, “Torque ripple evaluation of high-performance synchronous reluctance machines,” IEEE Industry Applications Magazine, vol. 1, no.4, pp. 14-22, July/ Aug. 1995.
[36] A. Fratta and A. Vagati, “A reluctance motor drive for high dynamic performance application,” IEEE Transactions on Industry Applications, vol. 28, no. 4, pp. 873-879, July/Aug. 1992.
[37] R. Morales-Caporal and M. Pacas, “Encoderless predictive direct torque control for synchronous reluctance machines at very low and zero speed,” IEEE Transactions on Industrial Electronics , vol. 55, no. 12, pp. 4408-4416, Dec. 2008.
[38] S. E. Lyshevski, A. Nazarov, A. E. Antably, A. S. C. Sinha, M. Rizkalla, and M. E. Sharkawy, “Synchronous reluctance motors: nonlinear analysis and control,” IEEE ACC-2000, pp. 1108-1112, June 2000.
[39] Texas Instruments, TMS320X2833X System Control and Interrupts Reference Guide, http://www.focus.ti.com/ 2007.

無法下載圖示 全文公開日期 2016/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE