簡易檢索 / 詳目顯示

研究生: 陳川鎰
Chuan-Yi Chen
論文名稱: 電流補正法修正鋰電池殘餘電量計算模型研究
Study of Correction Model for Correcting Residual Capacity of Lithium-Ion Battery by Current Compensation Method
指導教授: 郭永麟
Yong-lin Kuo
口試委員: 楊振雄
Cheng-hsiung Yang
徐勝均
Sheng-Dong Xu
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 殘餘電量電池衰退模型電量衰減最佳化庫倫積分法
外文關鍵詞: state-of-charge (SOC), Capacity fade model, Coulombic counting
相關次數: 點閱:500下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今世界對於鋰電池的使用越來越廣泛,隨之對於電量的預估就需要越來越精確,而市面上對於鋰電池電量的預估方式,通常是使用庫倫積分法進行預測電量,但實際使用上,會出現越來越不準的現象,所以出現了許多對於補償方式的研究,可是在深入了解後,發現都有其缺點存在,最後會導致電量預估誤差擴大,針對這些缺點,作者建構一套殘餘電量預估的數學模型,並將此模型擴展到可通用到異種電池,新電池只需循環幾次充放電,就可以建構自己的殘餘電量數學模型,甚至可以在每顆鋰電池的使用過程,不斷校正自身的數學模型,使電量預估的準確率提高,而在電池衰減時,此套模型可以事先反應並不斷調整模型來符合衰減後的電池,真正做到每顆電池客製化自己的數學模型,並可讓使用者最佳化充放電參數,減緩電池衰減,本研究實證完整的放電誤差在2%內,而放電5成後的誤差率也在3%左右,此數學模型可供電池廠商,手機廠商,電動車廠商等等有需要使用到鋰電池進的廠商,進行續開發成軟體、充電器等。


Nowadays, the increasingly extensive application of Lithium batteries proposes a more accurate requirement for the estimation of power consumption. Coulomb counting method is the commonly used way to estimate Lithium battery power in the market, but it will become more inaccurate in actual. For this reason, many studies on compensation methods are conducted. However, the in-depth understanding finds the shortcomings are widespread. There are two most important problems. One is the compensation method after battery attenuation, which is too complicated and time-consuming to be performed by ordinary users. The other is that there is no discussion or research on the interaction between current and power charge & discharge, which will finally expand the error of power estimation.On this basis, the simple and accessible charge & discharge data is adopted to construct a set of mathematical model for state-of-charge (SOC). Meanwhile, this model is expanded to be universal for dissimilar batteries so that the new battery can establish its own mathematical model of remnant capacity by cycling charge & discharge for several times. Moreover, each cell in the new battery can even keep rectifying its mathematical model during use so as to accurately enhance battery estimation. By means of reacting in advance and constantly adjusting the model, this set of model can also match the attenuated battery to authentically enable each cell to customize its mathematical model. The model allows users to optimize charge and discharge parameters so as to slow down the battery attenuation. In this study, it is empirically verified that the complete discharge error is within 2% and the error after 50% of discharge is about 3%. This mathematical model is applicable to manufacturers using Lithium battery, such as the producers of battery, cell phone and electric vehicle, which can be further developed into software and charger, etc.

目錄 誌謝 iii 摘要 iv Abstract v 目錄 vii 圖目錄 xii 表目錄 xv 符號說明 1 第一章 緒論 3 1.1 研究背景 3 1.2 文獻回顧 4 1.3 研究動機與方法 7 1.3.1 研究動機 7 1.3.2 研究方法 8 1.4 論文貢獻 9 1.5 論文架構 10 第二章 鋰電池衰退特性 11 2.1 充電電池種類與應用 11 2.2 鋰電池工作原理與衰退特性 14 2.2.1 鋰電池原理 14 2.2.2 鋰電池的衰退特性 15 第三章 庫倫積分法 18 3.1 庫倫積分法研究 18 3.2 等效內阻法進行電池系統 SoC研究 20 3.3 電流補正法對殘餘電量研究 22 第四章 實驗規劃 25 4.1 設計理念 25 4.2 實驗設備 25 4.2.1 鋰電池18650 25 4.2.2 交流低阻計 28 4.2.3 充放電儀器 29 4.3 實驗方法與流程圖 31 4.3.1 電池內阻與初始電量衰退實驗 31 4.3.2 充電電流對初始電量衰退實驗 33 4.3.3 放電電流對初始電量衰退實驗 34 4.3.4 開路電壓法與殘餘電量實驗 35 4.3.5 方程式進階補償實驗 36 4.3.6 異種電池在變電流下對殘餘電量的對比實驗 38 4.3.7 小結 40 4.4 實驗使用軟體 (BMS 電池管理系統) 41 4.5 實驗環境設定 45 第五章 實驗步驟與結果 46 5.1 實驗1─電池內阻與初始電量衰退實驗 46 5.1.1 實驗1參數定義 46 5.1.2 實驗1過程與數據分析 47 5.1.3 實驗1小結 56 5.2 實驗2 ─充電電流對初始電量衰退實驗 58 5.2.1 實驗2參數定義 58 5.2.2 實驗2過程與數據分析 59 5.2.3 實驗2小結 61 5.3 實驗3 ─放電電流對初始電量衰退實驗 63 5.3.1 實驗3參數定義 63 5.3.2 實驗3過程與數據分析 64 5.3.3 實驗3小結 67 5.4 實驗4 ─開路電壓法與殘餘電量實驗 71 5.4.1 實驗4參數定義 71 5.4.2 實驗4 過程與數據分析 72 5.4.3 實驗4小結 80 5.5 實驗5 ─方程式進階補償實驗 81 5.5.1 實驗5參數定義 81 5.5.2 實驗5過程與數據分析 82 5.5.3 實驗5小結 89 5.6 異種電池在變電流下對殘餘電量對比實驗 91 5.6.1 實驗6參數定義 91 5.6.2 實驗6過程與數據分析 93 5.6.3 實驗6小結 95 第六章 結論與建議 96 6.1 結論 96 6.2 未來研究方向 98 參考文獻 99

參考文獻
[1] Pop, V., Bergveld, H. J., Danilov, D., Regtien, P. P., & Notten, P. H. (2008). Battery management systems: Accurate state-of-charge indication for battery-powered applications (Vol. 9). Springer Science & Business Media.
[2] Guo, J., Li, Z., & Pecht, M. (2015). A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics. Journal of Power Sources, 281, 173-184.
[3] Liaw, B. Y., Roth, E. P., Jungst, R. G., Nagasubramanian, G., Case, H. L., & Doughty, D. H. (2003). Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical Lithium-ion cells. Journal of Power Sources, 119, 874-886.
[4] Shim, J., Kostecki, R., Richardson, T., Song, X., & Striebel, K. A. (2002). Electrochemical analysis for cycle performance and capacity fading of a Lithium-ion battery cycled at elevated temperature. Journal of Power Sources, 112(1), 222-230.
[5] Millner, A. (2010, September). Modeling Lithium ion battery degradation in electric vehicles. In Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES), 2010 IEEE Conference on (pp. 349-356). IEEE.
[6] Goodenough, J. B., & Kim, Y. (2009). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587-603.
[7] Danilov, D., & Notten, P. H. L. (2009, September). Adaptive battery management systems for the new generation of electrical vehicles. In Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE (pp. 317-320). IEEE.
[8] Safari, M., Morcrette, M., Teyssot, A., & Delacourt, C. (2010). Life prediction methods for Llithium-ion batteries derived from a fatigue approach ii. capacity-loss prediction of batteries subjected to complex current profiles. Journal of The Electrochemical Society, 157(7), A892-A898.
[9] Premanand, R., Durairajan, A., Haran, B. S., White, R. E., & Popov, B. N. (2002). Capacity fade studies on spinel based Li-ion cells. In Battery Conference on Applications and Advances, 2002. The Seventeenth Annual (pp. 25-30). IEEE.
[10] Dogger, J. D., Roossien, B., & Nieuwenhout, F. D. (2011). Characterization of Li-ion batteries for intelligent management of distributed grid-connected storage. IEEE Transactions on Energy Conversion, 26(1), 256-263.
[11] Chen, J., Buhrmester, C., & Dahn, J. R. (2005). Chemical overcharge and overdischarge protection for Lithium-ion batteries. Electrochemical and Solid-State Letters, 8(1), A59-A62.
[12] Zhang, Q., & White, R. E. (2008). Calendar life study of Li-ion pouch cells: Part 2: Simulation. Journal of Power Sources, 179(2), 785-792.
[13] Ren, D., Feng, X., Lu, L., Ouyang, M., Zheng, S., Li, J., & He, X. (2017). An electrochemical-thermal coupled overcharge-to-thermal-runaway model for Lithium ion battery. Journal of Power Sources, 364, 328-340.
[14] Fathoni, G., Widayat, S. A., Topan, P. A., Jalil, A., Cahyadi, A. I., & Wahyunggoro, O. (2017, October). Comparison of state-of-charge (SOC) estimation performance based on three popular methods: Coulomb counting, open circuit voltage, and Kalman filter. In Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), 2017 2nd International Conference on (pp. 70-74). IEEE.
[15] Baccouche, I., Jemmali, S., Mlayah, A., Manai, B., & Amara, N. E. B. (2018). Implementation of an improved Coulomb-counting algorithm based on a piecewise SOC-OCV relationship for SOC estimation of Li-ion Battery. arXiv preprint arXiv:1803.10654.
[16] 楊毅祥. (2010). 以等效內阻法進行電池系統 SoC 損耗修正. 臺灣大學機械工程學研究所學位論文, 1-89.
[17] Zhang, C., Jiang, J., Zhang, L., Liu, S., Wang, L., & Loh, P. C. (2016). A generalized SOC-OCV model for Lithium-ion batteries and the SOC estimation for LNMCO battery. Energies, 9(11), 900.
[18] Lavigne, L., Sabatier, J., Francisco, J. M., Guillemard, F., & Noury, A. (2016). Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment. Journal of Power Sources, 324, 694-703
[19] Prasetyo, D., Widayat, S. A., Amifia, L. K., Dewangga, B. R., Cahyadi, A. I., & Wahyunggoro, O. (2016). Online battery parameter and open circuit voltage (OCV) estimation using recursive least square (RLS).
[20] Lu, C., Zhang, L., Ma, J., Chen, Z., Tao, L., Su, Y., ... & Lin, Y. (2017). Li-ion battery capacity cycling fading dynamics cognition: A stochastic approach. Energy, 137, 251-259.
[21] Hou, J., & Li, L. (2018, May). Research on the detection of capacity and capacity fading of Li-ion battery of electric vehicles based on tomographic imaging. In 2018 IEEE International Conference on Energy Internet (ICEI) (pp. 117-122). IEEE.

[22] Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., & Li, Z. (2014). A comparative study of commercial Lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 251, 38-54.
[23] Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., ... & Liu, J. (2014). Mesoporous silicon sponge as an anti-pulverization structure for high-performance Lithium-ion battery anodes. Nature Communications, 5, 4105.
[24] Sun, T., Li, Z. J., Wang, H. G., Bao, D., Meng, F. L., & Zhang, X. B. (2016). A biodegradable Polydopamine‐derived electrode material for high‐capacity and long‐life Lithium‐ion and Sodium‐ion batteries. Angewandte Chemie International Edition, 55(36), 10662-10666.
[25] 許家興. (2009). 電動車電池類型與電池基礎介紹. 車輛研測資訊, 財團法人車輛研究測試中心.
[26] 柯賢文, "鋰電池," 科學發展482期, 2013.
[27] 陳鵬倫、邱奕超、涂家政,「鋰電池老化及健康狀態之估測」,中華民國第三十三屆電力工程研討會,2012
[28] 李惠, 吉維肖, 曹余良, 詹暉, 楊漢西, & 艾新平. (2018). 鋰離子電池熱失控防範技術. 儲能科學與技術, 7(3), 376-383.
[29] Stroe, D. I., Swierczynski, M., Stroe, A. I., Knap, V., Teodorescu, R., & Andreasen, S. J. (2015, March). Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing. In Ecological Vehicles and Renewable Energies (EVER), 2015 Tenth International Conference on (pp. 1-8). IEEE.
[30] 黃嘉賢, & 張舜長. (2009). 高電壓鋰電池組電量等化技術應用於複合電動車輛之研究 (博士論文, 大葉大學機械與自動化工程學系碩士班).
[31] Redondo-Iglesias, E., Venet, P., & Pelissier, S. (2017, April). Impact of battery ageing on e-mobility energy efficiency. In Ecological Vehicles and Renewable Energies (EVER), 2017 Twelfth International Conference on (pp. 1-6). IEEE.
[32] Meissner, E., & Richter, G. (2003). Battery monitoring and electrical energy management: Precondition for future vehicle electric power systems. Journal of Power Sources, 116(1-2), 79-98
[33] Pang, S., Farrell, J., Du, J., & Barth, M. (2001). Battery state-of-charge estimation. In American Control Conference, 2001. Proceedings of the 2001 (Vol. 2, pp. 1644-1649). IEEE.

QR CODE