簡易檢索 / 詳目顯示

研究生: 蘇福祥
Fu-Hsiang Su
論文名稱: 工程外膜囊泡奈米催化劑用於農藥降解
Designer Outer Membrane Vesicles as Nanobiocatalysts for Pesticides Degradation
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 童心欣
none
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 58
中文關鍵詞: 外膜囊泡纖維素結合蛋白有機磷水解酶
外文關鍵詞: organophosphorus hydrolase, outer membrane vesicle, cellulose binding domain
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機磷化合物為一種神經毒素,廣泛用於製造農藥及殺蟲劑,而有機磷農藥也是國內目前使用最廣泛、用量最大宗的農藥,但過度使用此類化合物不只對人體身體造成危害,其廢棄物對於環境也會造成影響,而現行對於有機磷酸酯化合物及其廢棄物的處理方式還維持在傳統的焚燒或掩埋,但是這兩種方法都會對環境造成汙染,如何在不造成額外汙染又有效率的處理此類化合物變成一個重要的課題。
    近十年來,運用酵素降解有機磷化合物的方法受到許多人注意。有機磷酸酯水解酶源自於微生物Pseudomonas diminuta,具有降解機磷化合物的功能,可應用於有機磷農藥的降解及檢測,是一種具有高發展潛力的酵素。本研究之目的為藉由分子生物學中的基因轉殖技術製備一個以外膜囊泡為載體的重組蛋白用於降解有機磷化合物,希望藉由OMVs特殊的結構可以賦予所表達蛋白特殊的功能,而其結果顯示其研究所表達之OPH可以有效率的降解有機磷化合物,而其所建立的重組蛋白具有較高的熱穩定度且即使連續使用十次也依然維持80%以上的活性。


    Organophosphate compounds (OPs) are a group of highly toxic compounds that are widely used as agricultural and domestic pesticides. The overuse of OPs not only caused environmental pollution but also increased the risk of human health. However, current techniques for detoxifying OPs rely on harsh chemical treatment. With the developments in biotechnology, enzymatic methods are increasingly used for detection and destruction of OPs. Organophosphorus hydrolase (OPH) isolated from soil microorganisms is one of the candidates that possesses the capability of hydrolyzing OPs efficiently. However, practical applications of large-scale enzymatic degradation have always been limited by the cost and stability of OPH. As a cost-effective alternative, enzyme immobilization is one of the generally used techniques to increase the reaction efficiency, enzyme stability and reusability of enzyme by immobilizing enzyme to the support. Different types of materials ranging from inorganic supports , nanomaterials to biomaterials have been utilized as enzyme supports. Outer membrane vesicles (OMVs) are 20 to 200 nm proteoliposomes, naturally derived from the outer membrane of gram-negative bacteria as part of their life cycle. Recently, OMVs have been utilized as platform nanomaterial supports to the fusion of heterologous proteins for enhanced functionality thus creating “designer OMVs.” However, a drawback of using designer OMVs is that they could not be isolated and purified easily due to its nanoscale size. To solve the problem, we engineered designer OMVs having two functionalities; OP degradation, and cellulose binding activities. The resulting bi-functional designer OMVs immobilized on cellulose exhibited enhanced OPH activity, recyclability, operational stability, and can be recovered from the reaction mixture via centrifugation.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 縮寫表 VIII 一、緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究內容 3 二、文獻回顧 5 2-1有機磷水解酶(Organophosphorus hydrolase,OPH) 5 2-2生物固定化技術 7 2-3 外膜囊泡(outer membrane vesicles,OMVs) 9 2-3-1 OMVs的發現 9 2-3-2 OMVs的結構 10 2-3-3 OMVs的應用 11 2-4 纖維素結合蛋白(cellulose binding domain,CBD) 12 三、實驗材料與方法 14 3-1 菌種與質體 14 3-2 實驗藥品 15 3-3 實驗器材 17 3-4 實驗方法 18 3-4-1 Mini-prep(小量質體製備) 18 3-4-2 聚合酶鏈鎖反應(Polymerase Chain Reaction,PCR) 19 3-4-3 DNA 瓊脂凝膠電泳(DNA Agarose gel electrophoresis) 21 3-4-4 DNA recovery 21 3-4-5 酶切(Digestion) 22 3-4-6 Ligation 23 3-4-7 勝任細胞(Compontent cell)製備 23 3-4-8 Transformation 24 3-4-9 蛋白質表達(protein expression) 25 3-4-10 SDS-PAGE 26 3.4-11 西方墨點法(Western blot) 27 3.4-12 免疫螢光法(Immunofluorescence) 29 3-4-13 OPH活性測定 30 3-4-14 CBD活性測定 30 3-4-15 pH對於OPH活性影響 31 3-4-16 纖維素吸附測試及SEM分析 31 3-4-17 酵素熱穩定測試 32 3-4-18 酵素再利用性(reusability)測試 33 四、結果與討論 35 4-1 重組質體建構所要考量的因素 35 4-2 重組質體的建構 37 4.3 蛋白質表達 40 4.4 免疫螢光測定 41 4.5 蛋白質活性確認 43 4.6 動態光散射粒徑分析儀(Dynamic Light Scattering, DLS) 45 4.7 pH對於OPH活性影響 47 4.8 藉由纖維素回收OMVs 49 4.9 酵素熱穩定性 51 4.10 酵素再利用性 52 五、結論 54 六、參考文獻 55

    1. Tuovinen K, K.E., Raushel FM, Hanninen O, Phosphotriesterase-A promising candidate for use in detoxification of organophosphates. Fund Appl Toxicol, 1994. 23: p. 578-584.
    2. Karns JS, M.M., Mulbry WW, Berbyshire MK, Kearney PC, Use of microorganisms and microbial systems in the degradation of pesticides. Application of Biotechnology to Agricultural Chemicals(Le Baron HM, ed), ACS Symposium Series, 1987. 334: p. 49-59
    3. Sethunathan N, Y.T., A Flavobacterium that degrades diazinon and parathion. Can J Microbiol, 1973(19): p. 873-875.
    4. Singh, B.K. and A. Walker, Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev, 2006. 30(3): p. 428-71.
    5. Singh, B.K., Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol, 2009. 7(2): p. 156-64.
    6. M.M. Benning, M.J.K., M.F. Raushel, H.M. Holden, Three-Dimensional Structure of Phosphotriesterase An Enzyme Capable of Detoxifying Organophosphate Nerve Agents. Biochemistry, 1994. 33: p. 15001-15007.
    7. G.A. Omburo, J.M.K., L.S. Mullins, F.M. Raushel, Characterisation of the zinc binding site of bacterial phosphotriesterase. J. Biol. Chem., 1992. 267: p. 13278-13283.
    8. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol, 1997. 15: p. 984-987.
    9. D.M., M., Hydrolysis of organophosphate insecticides by an immobilized enzyme system. Biotechnol.Bioeng., 1979. 21: p. 2247-2261.
    10. Liu R, Y.C., Xu Y, Xu P, JiangH,Qiao C, Development of a Whole-Cell Biocatalyst/Biosensor by Display of Multiple Heterologous Proteins on the Escherichia coli Cell Surface for the Detoxification and Detection of Organophosphates. J Agric Food Chem, 2013. 61: p. 7810-7816.
    11. Kwak, Y., S.-E. Lee, and J.-H. Shin, Expression of organophosphorus hydrolase in Escherichia coli for use as whole-cell biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2014. 99: p. 169-175.
    12. Rogers KR, W.Y., Mulchandani A,Mulchandani P, Chen W, Organophosphorus hydrolase based assay for organophosphate pesticides. Biotechnol Prog, 1999. 15: p. 517-521.
    13. Sahin A, D.K., Cropek D.M.,West A.C.,Banta S, A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase. Sensors and Actuators B: Chemical, 2011. 158(1): p. 353-360.
    14. Thakur, S., et al., A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates. Sensors and Actuators B: Chemical, 2012. 163(1): p. 153-158.
    15. Kim CS, C.B., Seo JH, Lim G, Cha HJ, Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds. Biosens Bioelectron, 2013. 41: p. 199-204.
    16. Shaveena T, P.K., M. Venkateswar R, D. Siddavattamc, A.K. Paul, Enhancement in sensitivity of fluorescence based assay for organophosphates detection by silica coated silver nanoparticles using organophosphate hydrolase. Sensors and Actuators B: Chemical, 2013. 178: p. 458-464.
    17. Boris N.N, J.K.G., Rory J.K, James R.W, Melinda E.W, Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. J. Controlled Release, 2010. 146: p. 318-325.
    18. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 1997. 15: p. 984-987.
    19. Shimazu M, M.A., Chen W, Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface expressed organophosphorus hydrolase. Biotechnol Bioeng, 2001. 76: p. 318-324.
    20. Shimazu M, N.A., Mulchandani A, Chen W, Cell surface display of OPH in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol Prog, 2003. 19: p. 1612-1614.
    21. Takayama K, S.S., Kuroda K,Ueda M, Kitaguchi T, Tsuchiyama K, et al, Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnol Prog, 2006. 22: p. 939-943.
    22. Kulp, A. and M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 2010. 64: p. 163-84.
    23. Bishop DG, W.E., An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem. J., 1965. 96: p. 567-576.
    24. Chatterjee SN, D.J., Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol, 1967. 49: p. 1-11.
    25. McBroom, A.J., et al., Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol, 2006. 188(15): p. 5385-92.
    26. McBroom AJ, K.M., Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol, 2007. 63: p. 545-548.
    27. Deatherage, B.L., et al., Biogenesis of bacterial membrane vesicles. Mol Microbiol, 2009. 72(6): p. 1395-407.
    28. Schwechheimer, C., C.J. Sullivan, and M.J. Kuehn, Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry, 2013. 52(18): p. 3031-40.
    29. Kobayashi H, U.K., Hirayama H, Horikoshi K, Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol, 2000. 182: p. 6451-6455.
    30. K.E.Bonnington, M.J.K., Protein selection and export via outer membrane vesicles. BBA-Mol Cell Res, 2014. 1843: p. 1612-1619.
    31. Amano, A., H. Takeuchi, and N. Furuta, Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect, 2010. 12(11): p. 791-8.
    32. Kuehn MJ, K.N., Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev, 2005. 19: p. 2645-2655.
    33. TJ, B., Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol, 1999. 181: p. 4725-4733.
    34. Chutkan H, M.I., Manning A, Kuehn MJ, Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods MolBiol, 2013. 966(259-272).
    35. Chen, D.J., et al., Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci U S A, 2010. 107(7): p. 3099-104.
    36. Kesty, N.C. and M.J. Kuehn, Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem, 2004. 279(3): p. 2069-76.
    37. Kim, J.Y., et al., Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol, 2008. 380(1): p. 51-66.
    38. Miso P, Q.S., Fang L,M P.DeLisa,Chen W, Positional Assembly of Enzymes on Bacterial Outer Membrane Vesicles for Cascade Reactions. PLOS ONE, 2014. 9(5): p. e97103.
    39. Shoseyov O, S.Z., Levy I, Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiol. Mol. Bio Rev, 2006. 70: p. 195-283.
    40. Boraston AB, B.D., Gilbert HJ, Davies GJ, Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J., 2004. 382: p. 768-781.
    41. Wang AA, M.A., Chen W, Whole-cell immobilization using cell surface-exposed cellulose-binding domain. Biotechnol. Prog., 2001. 17(407-411).
    42. Wang, A.A., A. Mulchandani, and W. Chen, Specific Adhesion to Cellulose and Hydrolysis of Organophosphate Nerve Agents by a Genetically Engineered Escherichia coli Strain with a Surface-Expressed Cellulose-Binding Domain and Organophosphorus Hydrolase. Appl Environ Microbiol, 2002. 68(4): p. 1684-1689.
    43. Bernadac A., G., M., Lazzaroni, J.C., Raina, S., and Lloubes, R., Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol., 1998. 180: p. 4872-4878.
    44. Shimazu M, M.A., Chen W, Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog., 2001. 17: p. 76-80.
    45. Lorenzo V., L.E., B. Kessler, and K. N. Timmis, Analysis of Pseudomonas gene products using lacIq/Pirp-lac plasmids and transposons that confer conditional phenotypes. Gene, 1993. 123: p. 17-24.

    無法下載圖示 全文公開日期 2020/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE