簡易檢索 / 詳目顯示

研究生: 曾世傑
Shih-Chieh Tseng
論文名稱: 以試驗與數值分析探討地工織物加勁土抵抗爆壓力之研究
Experimental and Numerical Studies on the Blast-Resistance Performance of Geotextile-Reinforced Soil
指導教授: 鄧福宸
Fu-Chen Teng
楊國鑫
Kuo-Hsin Yang
口試委員: 鄧福宸
Fu-Chen Teng
楊國鑫
Kuo-Hsin Yang
李宏輝
Hung-Hui Li
蔡營寬
Ying-Kuan Tsai
鄭世豪
Shih-Hao Cheng
簡志峻
Chih-Chun Chien
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 160
中文關鍵詞: 地工合成材料加勁土爆炸荷載張力膜效應
外文關鍵詞: Geosynthetics, Reinforced soil, Blast loads, Tensioned membrane effect
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

地表爆炸會對地下結構造成相當大的破壞,本論文研究進行一系列試驗和數值研究以探討加勁土在爆炸荷載下的性能與加勁機制。在現場爆炸試驗中,本研究爆炸試驗模型包含僅回填砂土(未加勁土)及用三層地工不織布加勁砂土的試驗坑,以113克TNT炸藥作為爆炸荷載置於試驗坑表面,並量測爆炸後空氣場與土壤中的爆炸壓力、地面變形和實際加勁材料的拉伸應變,用以比較未加勁土和加勁土的試驗結果,以評估使用加勁土作為抵禦爆炸荷載的衰減層之效能。在進行二次爆炸試驗結果顯示,加勁土中之尖峰爆炸壓力值分別僅為未加勁土中的10%和28%。本研究確定了兩種加勁機制:張力膜效應和橫向位移約束效應,此外,本研究亦進行一系列數值分析來評估加勁參數(即加勁材鋪設層數、極限張力強度和勁度)對爆炸壓力的影響,分析結果表示,加勁材鋪設層數和勁度的增加有效地降低了爆炸壓力。基於參數分析結果,實施以加勁土為爆壓衰減層的等值有效厚度研究,為土壤加勁抵抗爆壓力的應用與設計,提供了量化的結果與設計上的建議,以作為一種有效防爆措施選項,以保護地下結構免受地表爆炸的影響。


An explosion on the ground surface can cause considerable damage to underground structures. In this study, a series of experimental and numerical investigations were conducted to examine the performance and reinforcing mechanism of reinforced soil subjected to blast loads. An excavated pit backfilled with sand only (unreinforced soil) and sand reinforced with three layers of geotextiles (reinforced soil) were used as test models in a field explosion test. In the field explosion test, blast pressures in air and soil, ground deformation, and mobilized reinforcement tensile strain were measured. The test results obtained for the reinforced and unreinforced soil were compared to evaluate the effectiveness of using soil reinforcement as a protective barrier against blast loads. The test results indicated that peak blast pressure in the reinforced soil was only 10%-28% of those in the unreinforced soil. Two reinforcing mechanisms were identified in this study: the tensioned membrane effect and lateral restraint effect. Moreover, a series of numerical analyses were performed to evaluate the effects of reinforcement parameters on the blast pressure. This study provides useful insights for the application and design of soil reinforcement as an alternative antiexplosion measure to protect underground structures against surface explosions.

論文摘要 I Abstract II 誌謝 Ⅲ 目錄 VI 圖目錄 X 表目錄 XIV 符號表 XV 縮寫表 XVII 第一章 緒 論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 4 第二章 文獻回顧 8 2.1 地工織物受外力作用行為與特性 8 2.2 加勁土遭受外力荷載行為 11 2.3 爆炸荷載引致土層動態行為 15 2.4 抗爆震構造物研究 18 2.4.1 機動組合式掩體 18 2.4.2 急造組合式抗爆震擋牆 19 2.4.3 加勁擋土牆抗爆震實例 21 第三章 縮尺爆炸試驗 24 3.1 試驗佈置與縮尺相似律 24 3.2 試驗砂土基本性質試驗 29 3.2.1 物理性質試驗 29 3.2.2 壓密排水三軸試驗 31 3.2.3 動力三軸試驗 33 3.3 地工不織布材料性質試驗 36 3.4 現地縮尺爆炸試驗 40 3.4.1 試驗材料整備與量測儀器測試 40 3.4.2 爆炸試驗場地配置 42 3.4.3 爆炸試驗執行 47 第四章 爆炸試驗結果與探討 51 4.1 爆炸壓力數據分析 51 4.1.1 空氣場爆炸壓力 51 4.1.2 土層爆炸壓力 54 4.2 地表與地工不織布變形 58 4.2.1 地表變形 58 4.2.2 地工不織布變形 60 4.2.3 地工不織布加勁機制 61 第五章 數值模擬分析方法與驗證 63 5.1 LS-DYNA程式介紹 63 5.1.1 元素型態概述 64 5.1.2 計算大變形方法概述 66 5.2 數值模型參數設定與收斂性分析 68 5.2.1 空氣材料 75 5.2.2 炸藥材料 76 5.2.3 土壤材料 77 5.2.4 地工不織布材料 79 5.3 數值模型驗證成果 80 5.3.1 空氣場爆壓驗證 80 5.3.2 砂土層爆壓驗證 83 5.3.3 地工不織布材料變形驗證 85 5.4 地工不織布衰減爆壓力學機制 86 第六章 參數研究 91 6.1 足尺寸數值模型 91 6.2 加勁材料參數研究 95 6.2.1 加勁材料鋪設層數 97 6.2.2 加勁材料勁度 99 6.2.3 加勁材料極限張力強度 101 6.2.4 參數靈敏度分析 102 6.2.5 衰減層設計厚度探討 103 6.3 土壤參數研究 104 6.3.1 數值模型建立與分析 104 6.3.2 純砂土層衰減爆壓分析 106 6.3.3 加勁土層衰減爆壓分析 110 6.3.4 土壤緊密程度與彈坑大小分析 111 6.3.5 綜合討論 112 6.4 不同炸藥量影響衰減層設計分析 114 第七章 結論與建議 116 7.1 結論 116 7.1.1 現地縮尺爆炸試驗 116 7.1.2 數值分析驗證 118 7.1.3 參數研究案例 119 7.2 建議 121 參 考 文 獻 123 作 者 簡 歷 138 著 作 目 錄 139

1.曾世傑(2005),『地下結構體爆震反應研究』,國防大學中正理工學院軍事工程學系,碩士論文。
2.林靜怡(2003),『細粒料對粉土細砂小應變勁度之影響』,國立交通大學土木工程學研究所,碩士論文。
3.趙海鷗(2003),『LS-DYNA動力分析指南』,兵器工業出版社。
4.皮盛榮(2014),『地下指揮所近場爆炸實驗與數值模擬分析』,國防大學中正理工學院軍事工程學系,博士論文。
5.王耀德(2013),『邊坡受爆震力影響之動態力學行為研究』,國立屏東科技大學土木工程系,博士論文。
6.郭立德(2004),『爆震力引致地下掩體動態反應研究』,國防大學中正理工學院軍事工程學系,碩士論文。
7.周南山(2016),『地工合成材料在永續工程之應用』,中華民國環境工程學會電子報,第2期。pp1-16。
8.蘇茂林,劉俊杰,李錫霖(2005),『加勁工法在公路工程之應用探討』,台灣公路工程月刊,第31卷第10期,pp12-13。
9.竑祥有限公司,2013/3/29,https://photo.xuite.net/a601.b489/5618613/5.jpg。(2022/7/2摘錄)
10.自由時報,2014/9/18,https://news.ltn.com.tw/news/politics/breakingnews/1109090。(2022/7/2摘錄)
11.Army Technology, (2022). “HESCO Defensive Barriers, Protective Structures and Body Armour.” Army Technology, https://www.army-technology.com/contractors/civil-defence-security-and-law-enforcement/hesco/.(2022/7/10)
12.AbdelSalam, S. S., and Azzam, S. A. (2016). “Reduction of lateral pressures on retaining walls using geofoam inclusion.” Geosynthetics International, 23(6), 395-407.
13.Anil, O., Erdem, R.T., and Kantar, E. (2015). “Improving the impact behaviour of pipes using geofoam layer for protection.” International Journal of Pressure Vessels and Piping, 132-133, 52-64.
14.An, J., Tuan, C. Y., ASCE, F., Cheeseman, B. A. and Gazonas, G. A. (2011). “Simulation of soil behavior under blast loading.” International Journal of Geomechanics. 11(4), 323-334.
15.Ardah, A., Abu-Farsakh, M.Y., and Voyiadjis, G.Z. (2018). “Numerical evaluation of the effect of differential settlement on the performance of GRS-IBS.” Geosynthetics International, 25(4), 427-441.
16.ASTM D3999. “Standard Test Method for the Determination of the Modulus and Damping Properties of Soil using the Cyclic Triaxial Apparatus.” ASTM International, West Conshohocken, PA, USA.
17.ASTM D4595. “Standard Test Method for Tensile Properties of Geotextiles by the Wide Width Strip Method.” ASTM International, West Conshohocken, PA, USA.
18.ASTM D6241. “Standard Test Method for Geotextile Puncture Testing, ASTM International.” West Conshohocken, PA, USA.
19.Babagiray, G., Akbaş, S. O., and Anil, O. (2016). “Investigation of impact behavior of HDPE pipes with geocell protective layer.” 6th 4 European Geosynthetics Congress (EuroGeo6), Slovenia, 762-773.
20.Baker, W. E., Westine, P. S., and Dodge, F. T. (1973). “Similarity Methods in Engineering Dynamics.” Spartan Books, Rochelle Park, New Jersey.
21.Barauskas, R., and Abraitienė, A. (2007). “Computational analysis of impact of a bullet against the multilayer fabrics in ls-dyna.” International Journal of Impact Engineering. 34(7), 1286-1305.
22.Baziar, M. H., Shahnazari, H., and Kazemi, M. (2018). “Mitigation of surface impact loading effects on the underground structures with geofoam barrier: Centrifuge modeling.” Tunnelling and Underground Space Technology, 80, 128-142.
23.Boyle, S.R., Gallagher, M. and Holtz, R.D. (1996). “Influence of strain rate, specimen length and confinement on measured geotextile properties.” Geosynthetics International, 3(2), 205-225
24.Brandl, H. (2011). “Geosynthetics applications for the mitigation of natural disasters and for environmental protection.” Geosynthetics International, 18(6), 340-390.
25.Chen, J.F., Tolooiyan, A., Xue, J.F., and Shi, Z.M. (2016). “Performance of a geogrid reinforced soil wall on PVD drained multilayer soft soils.” Geotextiles and Geomembranes, 44(3), 219-229.
26.Cheng, D. S., Hong, C. W. and Pi, S. J. (2013). “Numerical simulation of near-field explosion.” Journal of Applied Science and Engineering, 16(1), 61-67.
27.Choudhury, D. and Ahmad, S.M. (2007). “Design of waterfront retaining wall for the passive case under earthquake and tsunami.” Applied Ocean Research, 29, 37-44.
28.Dubec B M.Sc., Stonis P M.Sc., (2018). “Material model parameters identification of blast environment.” International Scientific Journals SECURITY & FUTURE, 2(3), 142-145.
29.Cuomo, S., Moretti, S., Wang, Y., D'Amico A., Frigo, L., and Aversa, S. (2020). “Modelling of geosynthetic-reinforced barriers under dynamic impact of debris avalanche.” Geosynthetics International, 27(1), 65-78.
30.Dave M.M., and Solanki C.H. (2020). “Protection of buried pipelines using geosynthetics under different loading conditions—a review.” Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, 55, 249-262.
31.De, A., and Zimmie, T. F. (2016). “Effects of surface explosion on underground tunnel and potential mitigation measures.” Transportation Infrastructure Geotechnology. 3, 74-90.
32.De, A., Morgante, A.N., and Zimmie, T.F. (2016). “Numerical and physical modeling of geofoam barriers against effects of surface blast on underground tunnels.” Geotextiles and Geomembranes, 44, 1-12.
33.Dobratz, B.M. (1981). “LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants. UCRL-52997,” Lawrence Livermore National Laboratory, Livermore, CA, USA.
34.Esmaeili, M., and Tavakoli, B. (2019). “Finite element method simulation of explosive compaction in saturated loose sandy soils.” Soil Dynamics and Earthquake Engineering, 116, 446-459.
35.Farukh, F., Demirci, E., Acar, M., Pourdeyhimi, B., and Silberschmidt, V. V. (2012). “Strength of fibres in low-density thermally bonded nonwovens-An experimental investigation.” Journal of Physics: Conference Series, 382, 012018.
36.Fattah, M.Y., and Redha, W.B.M. (2016). “Effect of geocell reinforcement in the mitigation of traffic loads transmitted to the flexible buried pipes.” Global Journal of Engineering Science and Research Management, 3(7), 118-128.
37.Fowze, J.S.M., Bergado, D.T., Soealump, S., Voottipreux, P. and Dechasakulsom, M. (2012). “Rain-triggered landslide hazards and mitigation measures in Thailand: From research to practice.” Geotextiles and Geomembranes, 30, 50-64.
38.Giroud, J.P., Bonaparte, R., Beech, J., and Gross, B. (1990). “Design of soil layer geosynthetic systems overlying voids.” Geotextiles and Geomembranes, 9(1), 11-50.
39.Haliburton, T., Lawmaster, J. and McGuffey, V. (1981). “Use of Engineering Fabrics in Transportation Related Applications.” Federal Highway Administration, FHWA DTFH61-80-C-00094. Federal Highway Administration,Washington, DC, USA.
40.Han, J., Oztoprak, S., Parsons, R.L., and Huang, J. (2007). “Numerical analysis of foundation columns to support widening of embankments.” Computer and Geotechnics, 34(6), 435-448.
41.Han, Y., Zhang, L. and Yang X. (2016). “Soil-tunnel interaction under medium internal blast loading.” Procedia Engineering, 143, 403-410.
42.Hegde, A.M., and Sitharam, T.G. (2015). “Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells.” Geotextiles and Geomembranes, 43(5), 372-381.
43.Hung, W.Y., Yang, K. H., Nguyen, T. S. and Pham T. N. P. (2020). “Performance of geosynthetic-reinforced soil walls at failure.” Journal of GeoEngineering, 15(1), 13-29.
44.Jordan, J. B., Naito, C. J., Haque, B. Z. (Gama). (2014). “Progressive damage modeling of plain weave E-glassphenolic.” Composites Part B: Engineering. 61, 315-323.
45.Kashani Masoud Haghi, and Milani Abbas S. (2016). “Damage prediction in woven and non-woven fabric composites.” Intech Open. 233-262.
46.Khodaparast, M, Mohamad Momeni, R., and Bayesteh, H. (2022). “Numerical simulation of surface blast reduction using composite backfill.” Geosynthetics International, 29(1), 66-80.
47.Kim, K. M., Briaud, J. L., Bligh, R. and Abu-Odeh, A. (2010). “Full-scale impact test of four traffic barriers on top of an instrumented MSE wall.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 136(3), 431-438.
48.King, L., Bouazza, A., Gaudin, C., O'Loughlin, C.D., and Bui, H.H. (2019). “Behavior of geosynthetic-reinforced piled embankments with defective piles.” Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019090.
49.Koseki, and Shibuya, S., (2014). “Mitigation of disasters by earthquakes, tsunamis, and rains by means of Geosynthetic-reinforced soil retaining walls and embankments.” Transportation Infrastructure Geotechnology, 2(1), 231-261.
50.Krieg, R.D. (1972). “A Simple Constitutive Description for Cellular Concrete.” SC-DR825 72-0883, Sandia National Laboratories, Albuquerque, NM, USA.
51.Kuwano, J., Miyata, Y. and Koseki, J., (2012). “Performance of reinforced soil walls during the 2011 Tohoku earthquake.” Geosynthetics International, 21(3), 179-196.
52.Lambert, S., and Bourrier, F., (2013). “Desing of rockfall protection embankments: A review.” Engineering Geology, 154, 77-88.
53.Lambert, S., Gotteland, P.and Nicot F. (2009). “Experimental study of the impact response of geocells as components of rockfall protection embankments.” Natural Hazards and Earth System Sciences, 9(2), 459-467.
54.Lee K. Z. Z., N.Y. Chang, H.Y. Ko. (2010). “Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking.” Geotextiles and Geomembranes, 28(4), 317-334.
55.Liu, C. N., Yang, K. H. and Nguyen, M. D. (2014). “Behavior of geogrid-reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression.” Geotextiles and Geomembranes, 42, NO. 5, 479-493.
56.Liu, C.N., Huang, W.W., Lin, B.H., and Ho, Y.H. (2021). “Finite element analyses of geosynthetic-reinforced soil ground under surcharge and probabilistic estimation of the bearing capacity.” Journal of GeoEngineering, 16(3), 99-109.
57.LS-DYNA (2010). LS-DYNA User’s Manual VOLUME I. Livermore Software Technology Corporation, Livermore, CA, USA.
58.Martínez-Hergueta F, Ridruejo A, González C, and LLorca J. (2016). “A multiscale micromechanical model of needlepunched nonwoven fabrics.” International Journal of Solids and Structures. 96, 81-91.
59.Martínez-Hergueta, F., Ridruejo, A., González, C. and Llorca J. (2017). “Numerical simulation of the ballistic response of needle-punched nonwoven fabrics.” International Journal of Solids and Structures, 106-107, 56-67.
60.Martínez-Hergueta, F., Ridruejo, A., González, C. and Llorca, J. (2022). “Ballistic response of needle-punched nonwovens.” Mechanics of Fibrous Networks, 241-261.
61.Miao, L., Wang, F., Han, J., and Lv, W. (2014). “Benefits of geosynthetic reinforcement in widening of embankments subjected to foundation differential settlement.” Geosynthetics International, 21(5), 321-332.
62.Ng, C. C., Chew, S. H., Karunaratne, G. P., Tan, S. A. and Loh, S. L. (2000). “Flexible and rigid faced MSE walls subject to blasting.” Advances in Transportation and Geoenvironmental Systems Using Geosynthetics, ASCE, Reston, VA, USA, 322-336.
63.Nguyen, M. D., Yang, K. H., Lee, S. H., Wu, C. S. and Tsai, M. H. (2013). “Behavior of nonwoven-geotextile-reinforced sand and mobilization of reinforcement strain under triaxial compression.” Geosynthetics International, 20(3), 207-225.
64.Nguyen, M. D., Yang, K. H. and Yalew, W. M. (2020). “Compaction behavior of nonwoven geotextile-reinforced clay.” Geosynthetics International, 27(1), 16-33.
65.Nilakantan Gaurav, Keefe Michael, Bogetti Travis A, Adkinson Rob, and Gillespie Jr John W. (2010). “On the finite element analysis of woven fabric impact using multiscale modeling techniques.” International Journal of Solids and Structures. 47(17), 2300-2315.
66.Oettle, N. K., and Bray, J.D. (2013). “Geotechnical mitigation strategies for earthquake surface fault rupture.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 139(11), 1864-1873.
67.Ohta, H., Ishigaki, T. and Tatta, N. (2013). “Retrofit technique for asphalt concrete pavements after seismic damage.” Proceedings of 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 1333-1336.
68.Okabe, T., Motani, T., Nishikawa, M., and Hashimoto, M. (2012). “Numerical simulation of microscopic damage and strength of fiber reinforced plastic composites.” Advanced Composite Materials, 21(2), 147-163.
69.Ossa, A., and Romo, M. P. (2009). “Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam.” Geosynthetics International. 16(5), 327-338.
70.admanabha Vivek, Sitharam Thallak G. (2017). “Shock wave attenuation by geotextile encapsulated sand barrier systems.” Geotextiles and Geomembranes. 45(3), 149-160.
71.Palmeira, E. M., and Andrade, H. K. P. A. (2010). “Protection of buried pipes against accidental damage using geosynthetics.” Geosynthetics International, 17(4), 228-241.
72.Peila, D., Oggeri, C., and Castiglia, C. (2007). “Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests.” Landslides, 4, 255-265.
73.Perkins, S. W. (1999). “Mechanical response of geosynthetic-reinforced flexible pavements.” Geosynthetics International, 6(5), 347-382.
74.Phadnis, V. A., Pandya, K. S., Naik, N. K., Roy, A., and Silberschmidt, V. V. (2013). “Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments.” Journal of Physics: Conference Series, 451 012019, 1-9.
75.Pieri, R. (1998). “Using Reinforced Earth Walls for Blast Mitigation.” Master’s Thesis, Department of Civil Engineering, University of Florida, Gainesville, FL, USA.
76.Pires, A.C.G., and Palmeira, E. M. (2021). “The influence of geosynthetic reinforcement on the mechanical behaviour of soil-pipe systems.” Geotextiles and Geomembranes, 49(5), 1117-1128.
77.Rajesh, S., and Viswanadham, B.V.S. (2012). “Centrifuge modeling and instrumentation of geogrid-reinforced soil barriers of landfill covers.” Journal of Geotechnical and Geoenvironmental engineering, ASCE, 138(1), 26-37.
78.Recio-Molina, J., and Yasuhara, K. (2005). “Stability of modified geotextile wrap around revetments for coastal protection.” Geosynthetics International, 12 (5), 260-268.
79.Ronco, C., Oggeri, C., and Peila, D. (2009). “Design of reinforced ground embankments used for rockfall protection.” Natural Hazards and Earth System Sciences, 9, 1189-1199.
80.Roodi, G.H and Zornberg, J.G. (2017). “Stiffness of soil-geosynthetic composite under small displacements. II: experimental evaluation.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 143(10), 04017076.
81.Sadat, R.S., Huang, J., Bin-Shafique, S., and Rezaeimalek, S. (2018). “Study of the behavior of mechanically stabilized earth (MSE) walls subjected to differential settlements.” Geotextiles and Geomembranes, 46(1), 77-90.
82.Scherbatiuk, K. and Rattanawangcharoen, N. (2008). “Experimental testing and numerical modeling of soil-filled concertainer walls.” Engineering Structures, 30(12), 3545-3554.
83.Shim, V. P. W, Tan, V. B. C, and Tay, T. E. (1995). Modelling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering. 16(4), 585-605.
84.Soude, M., Chevalier, B., Grediac, M., Talon, A., and Gourves, R. (2013). “Experimental and numerical investigation of the response of geocell reinforced walls to horizontal localized impact.” Geotextiles and Geomembranes, 39, 39-50.
85.Sun, X. and Han, J. (2019a). “Mechanistic-empirical analysis of geogrid-stabilized layered system: Part I. Solutions.” Geosynthetics International, 26(3), 273-285.
86.Sun, X. and Han, J. (2019b). “Mechanistic-empirical analysis of geogrid-stabilized layered systems: Part II. Analysis.” Geosynthetics International, 26(3), 286-296.
87.Sun, X., Han, J., Parsons, R.L., and Thakur, J. (2018). “Equivalent California bearing ratios of multi-axial geogrid-stabilized aggregates over weak subgrade.” Journal of Materials in Civil Engineering, ASCE, 30(11): 04018284.
88.Talebi, M., Meehan, C.L., and Leshchinsky, D. (2017). “Applied bearing pressure beneath a reinforced soil foundation used in a geosynthetic reinforced soil integrated bridge system.” Geotextiles and Geomembranes, 45(6), 580-591.
89.Tuan, C. (2014). “Ground shock resistance of mechanically stabilized earth walls.” International Journal of Geomechanics, 14(3), 06014003.
90.Tupa, N., and Palmeira, E. M. (2007). “Geosynthetic reinforcement for the reduction of the effects of explosions of internally pressurised buried pipes.” Geotextiles and Geomembranes, 25, 109-127.
91.USDA (United States Department of the Army) (1986). “Army Technical Manual No. TM 5-855-1: Design and Analysis of Hardened Structures to Convention Weapon Effects.” Headquarters Departments of the Army, the Air Force, the Navy and the Defense Special Weapons Agency, Washington, DC, USA.
92.USDA (United States Department of the Army) (1998). “Army Technical Manual No. TM 5-855-1: Design and Analysis of Hardened Structures to Convention Weapon Effects.” Headquarters Departments of the Army, the Air Force, the Navy and the Defense Special Weapons Agency, Washington, DC, USA.
93.USDA (2008). “Unified Facilities Criteria No. UFC 3-340-02: Structures to Resist the Effects of Accidental Explosions.” Department of the Army and Defense Special Weapons Agency, Washington, DC, USA.
94.Venkataramana, K., Singh, R.K., Deb, A., Bhasin, V., Vaze, K.K., and Kushwaha, H.S. (2017). “Blast protection of infrastructure with fluid filled cellular polymer foam.” Procedia Engineering, 173, 547-554.
95.Vivek, P. and Sitharam, T. G. (2017). “Shock wave attenuation by geotextile encapsulated sand barrier systems.” Geotextiles and Geomembranes, 45(3), 149-160.
96.Viswanadham, B., and Muthukumaran, A. (2007). “Influence of geogrid layer on the integrity of compacted clay liners of landfills.” Soils and Foundations, 47(3), 517-532.
97.Viswanadham, B. V. S., and Konig, D. (2009). “Centrifuge modeling of geotextile reinforced slopes subjected to differential settlements.” Geotextiles and Geomembranes, 27(2), 77-88.
98.Wang, I. T. (2020). “Nonlinear dynamic response and deformation analysis of soil under the explosion shock loading.” Journal of Vibroengineering, 22(7), 1648-1660.
99.Wang, I. T. (2021). “Numerical and experimental approach for failure analysis of soil subjected to surface explosion loading.” Shock and Vibration, 2021, 4981507.
100.Wang, J. (2001). “Simulation of landmine explosion using LS-DYNA 3D software: benchmark work of simulation of explosion in soil and air.” DSTO Aeronautical and Maritime Research Laboratory, Australia, DSTO-TR-1168.
101.Wang, L., Liu, S., Shen, C., and Lu, Y. (2021). “Laboratory test and modelling of gas pressure under geomembranes subjected to the rise of groundwater in plain reservoirs.” Geotextiles and Geomembranes, 49(1), 81-96.
102.Wang, Z. L., Li, Y. C., and Wang, J. G. (2006). “Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering.” Geotextiles and Geomembranes. 24(5), 265-273.
103.Watanabe, K., Nakajima, S., Fujii, K., Matsuura, K., Kudo, A., Nonaka, T., and Aoyagi, Y., (2020). “Development of geosynthetic-reinforced soil embankment resistance to severe earthquakes and prolonged overflows due to tsunamis.” Soils and Foundations, 60(6), 1371-1386.
104.Witthoeft, A. F., and Kim, H. (2016). “Numerical investigation of earth pressure reduction on buried pipes using EPS geofoam compressible inclusions.” Geosynthetics International, 23(4), 677-693.
105.Woods, R. D. and Jedelet, L. P. (1985). “Energy attenuation relationships from construction vibrations.” Vibration Problems in Geotechnical Engineering, ASCE, New York, NY, USA, 229-246.
106.Wu, C. S. and Hong, Y. S. (2008). “The behavior of a laminated reinforced granular column.” Geotextiles and Geomembranes, 26(4), 302- 316.
107.Wu, C. S. and Hong, Y. S. (2009). “Laboratory tests on geosynthetic-encapsulated sand columns.” Geotextiles and Geomembranes, 27(2), 107-120.
108.Wu, J.T.H., Yang, K. H., Mohamed, S., Pham, T., and Chen, R-H, (2014). “Suppressing Dilation of soil-a reinforcing mechanism of soil-geosynthetic composites.” Transportation Infrastructure Geotechnology, 1(1), 68-82.
109.Xu, F., Li, W. L., Liu, Z. L., Zhang, B. F., and Zhang, B. Y. (2017). “Study of factors that influence geomembrane air expansion deformation under ring-restrained conditions.” Geotextiles and Geomembranes, 45(3), 178-183.
110.Yang, K. H., Chiang, J., Lai, C.W., Han, J. and Lin, M. L. (2020). “Performance of geosynthetic-reinforced soil foundations across a normal fault.” Geotextiles and Geomembranes, 48(3), 357-373.
111.Yang, K. H., Nguyen, M. D., Yalew, W. M., Liu, C. N. and Gupta, R. (2016). “Behavior of geotextile-reinforced clay in consolidated-undrained tests reinterpretation of porewater pressure parameters.” Journal of GeoEngineering, 11(2), 45-57.
112.Yang, K. H., Wu, J. T. H., Chen, R. H. and Chen, Y. S. (2016b). “Lateral bearing capacity and failure mode of geosynthetic-reinforced soil barriers subject to lateral loadings.” Geotextiles and Geomembranes, 44(6), 799-812.
113.Yang, K. H., Yalew, W. M. & Nguyen, M. D. (2016a). “Behavior of geotextile-reinforced clay with a coarse material sandwich technique under unconsolidated-undrained triaxial compression.” International Journal of Geomechanics, ASCE, 16, No. 3, 04015083.
114.Yasuhara, K., and Recio-Molina, J., (2007). “Geosynthetic-wrap around revetments for shore protection.” Geotextiles and Geomembranes, 25, 221-232.
115.Yogendrakumar, M. and Bathurst, R. J., (1992). “Numerical simulation of reinforced soil structures during blast loads.” Transportation Research Record, 1336, 1-8.
116.Zakrisson B, Häggblad H.-Ä. (2011). “Modelling and simulation of explosions in sand. New Design concepts in light-weight armour for vehicles.” LWAG – Light-weight armor for defence & security, Universidade de Aveiro, Portugal, 2011.
117.Zhao, P., Yuan, S., Li, L., Ge, Q., Liu, J., and Du, L. (2021). “Experimental study on the multi-impact resistance of a composite cushion composed of sand and geofoam.” Geotextiles and Geomembranes, 49(1), 45-56.
118.Zheng, Y., and Fox, P.J. (2017). “Numerical investigation of the geosynthetic reinforced soil-integrated bridge system under static loading.” Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017008.
119.Zornberg, J.G. (2017). “Geosynthetics in roadway infrastructure.” Procedia Engineering, 189, 298-306.
120.Zornberg, J.G., Roodi, G.H., and Gupta, R. (2017). “Stiffness of soil-geosynthetic composite under small displacements: I. model development.” Journal of Geotechnical and Geoenvironmental Engineering, 143(10), 04017075.

QR CODE