簡易檢索 / 詳目顯示

研究生: 吳品達
Pin-Da Wu
論文名稱: 角隅剪力連接物之受力行為與其在方形CFT耐震桿件之應用
The Behavior of Corner Shear Connector and It’s Application in Square CFT Seismic Members
指導教授: 陳正誠
Cheng-Cheng Chen
口試委員: 黃世建
Shyh-Jiann Hwang
許協隆
Hsieh-Lung Hsu
歐昱辰
Yu-Chen Ou
鄭敏元
Min-Yuan Cheng
蕭博謙
Po-Chien Hsiao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 218
中文關鍵詞: 剪力連接物合成結構混凝土填充型鋼管柱矩形CFT柱SRC結構推出試驗剪力傳遞
外文關鍵詞: Shear connector, Composite structure, Concrete-filled tubular columns, CFT Columns, Steel-reinforced concrete structure, Push-out test, Force transfer
相關次數: 點閱:303下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

混凝土填充型鋼管柱(concrete-filled tube columns或簡稱CFT柱)容易製造且具經濟性,在中高層耐震房屋結構具有高度競爭力。在CFT柱中,鋼管斷面與混凝土之間有界面剪力傳遞之需求,工程實務通常採用剪力釘來提供界面剪力強度。由於銲接可及性的問題,可能遇到鋼管內側無法施銲剪力釘的現象。為了解決CFT柱無法或不容易施銲剪力釘這個問題,因此開發出一個適合方形CFT柱,且可由鋼管外部安裝之高強度新型式剪力連接物,稱為「角隅剪力連接物」。
本研究完成6個系列共22個含角隅剪力連接物方形CFT push-out試體之試驗,完成2個系列共8支大尺寸梁-方形CFT柱子試體之撓曲反復側向載重試驗,同時蒐集53個含角隅剪力連接物方形CFT push-out試體之試驗結果。針對上述所有試體進行試驗觀察及試驗數據統計分析,可獲得結論如下:(1)角隅剪力連接物由鋼管外部安裝是可行的,達到本研究預期效果且可以發展出很高的強度。(2)印證聯合承壓面積的概念是可行的,CFT斷面尺寸在600×600範圍以內皆適用。(3)已釐清角隅剪力連接物之強度發展機制,強度發展機制有兩個。一個是相對滑動量5 mm以下之機制,另一個是相對滑動量30 mm以後之機制。(4)本研究認為,鋼管與混凝土間之實際相對滑動量並不大,相對滑動量5 mm以下之機制,才應是屬於工程實務可用範圍。本研究建立相對滑動量5 mm以下之強度評估公式,其準確度甚高。(5)角隅剪力連接物之強度需求甚低,本研究提供角隅剪力連接物之細部設計方法供設計者參考使用,在適用範圍內應屬相當保守。(6)鋼管與混凝土交界面不論有無握裹強度,對CFT柱耐震行為之影響,大概只有5 %。(7)CFT柱配置剪力釘或角隅剪力連接物,可以小幅度提升CFT柱之耐震性能。


The concrete-filled tube (CFT) is economical, especially in mid-rise building, and is easy to be fabricated. In a composite column, there exist interfacial shear force which need to be transferred between concrete and steel. Commonly, this interfacial shear force is transferred through shear connectors, which are difficult or even impossible to be applied to the inner side of a prefabricated tube section. As a solution to this problem, a new type of shear connector which can be installed outside the CFT column, named the corner shear connector, was developed. In this study, a total of 22 push-out test specimens using the corner shear connectors and 8 larger scale beam-to-CFT column assemblage specimens subjected to cyclic flexural loading were tested. In addition, a total of 53 push-out test specimens using corner shear connectors results were collected. Based on the test results and data analysis, some conclusions are drawn as following: (1) The construction method for corner shear connector installed from outside of CFT column is feasible and the strength that can be developed by the CFT column installed with corner shear connector is sufficiently high. (2) The idea of using the jointed bearing area to calculate the bearing strength of the corner shear connectors is feasible in CFT with dimension not larger than 600×600. (3) The corner shear connectors have two strength development mechanism, when the relative slip is less than 5 mm and when the relative slip is larger than 30 mm. (4) The large-scale beam-column assemblage test reveal that the actual relative slip between steel tube and concrete is relatively small and therefore, the strength development mechanism when the relative slip is less than 5 mm is more suitable for practical use. (5) The strength requirement of corner shear connectors is relatively low. A design method for corner shear connector is proposed in this study, which is quite conservative within the scope of application. (6) The effect of the presence of bond strength between steel and concrete interface to seismic performance of a CFT column is very limited, only around 5%. (7) The seismic performance of a CFT column installed with shear studs or corner shear connectors is only slightly improved.

符號索引 IX 表索引 XV 圖索引 XVII 第一章 緒論 1 1.1 CFT柱及其界面剪力 1 1.2 角隅剪力連接物 2 1.3 研究方法與範圍 4 第二章 角隅剪力連接物之Push-Out試驗 5 2.1 試體規劃 5 2.2 試體設計與製作 6 2.3 試驗裝置與加載 8 2.4 試驗結果與討論 9 2.4.1 載重-滑動量曲線 9 2.4.2 聯合承壓面積概念之檢討 10 2.4.3 尺寸效應之檢討 10 2.4.4 後期強度與鋼管壁寬厚比 11 2.4.5 角隅剪力連接物強度需求探討 12 2.4.6 承壓距離正規化之檢討 13 2.4.7 試體破壞行為之觀察 14 第三章 角隅剪力連接物之強度發展機制 15 3.1 前言 15 3.2 初始斜率段 17 3.3 水平段 20 3.4 中間斜率段 23 3.5 直線形與弧形之差異 23 第四章 角隅剪力連接物之強度評估與細部設計 25 4.1 前言 25 4.2 可用強度 25 4.3 最大強度 29 4.4 細部設計 31 第五章 角隅剪力連接物在方形CFT柱之應用 35 5.1 完全合成CFT柱之界面剪力 35 5.2 試體規劃與設計 38 5.3 試體製作 40 5.4 試驗裝置與加載 41 5.5 試驗結果與討論 42 5.5.1 整體行為 42 5.5.2 撓曲韌性 44 5.5.3 滑動量與細部檢討 45 第六章 結論與建議 47 6.1 結論 47 6.2 建議 50 參考文獻 51

[1] 陳正誠、林書豪、吳品達(2016)。大尺寸BCR鋼管柱的耐震性能。結構工程期刊,31(4),39-58。
[2] 吳紫瑩(2018)。冷作對BCP柱耐震性能之影響。臺北市:國立臺灣科技大學營建工程所碩士論文。
[3] AISC 360-16 (2016). Specification for structural steel buildings. Chicago, IL: American Institute of Steel Construction, ANSI/AISC 360-16.
[4] Roeder, C. W., Cameron, B., & Brown, C. B. (1999). Composite Action in Concrete Filled Tubes. Journal of Structural Engineering, 125(5), 477-484.
[5] Roeder, C. W., Chmielowski, R., & Brown, C. B. (1999). Shear Connector Requirements for Embedded Steel Sections. Journal of Structural Engineering, 125(2), 142-151.
[6] Furlong, R. W. (1967). Strength of Steel-Encased Concrete Beam Columns. Journal of the Structural Division, 93(5), 113-124.
[7] 張光耀(2018)。角隅鋼板剪力連接物在填充型鋼管柱之試驗行為。臺北市:國立臺灣科技大學營建工程所碩士論文。
[8] 沈晏州(2019)。填充型鋼管柱內鋼板剪力連接物之行為與強度評估。臺北市:國立臺灣科技大學營建工程所碩士論文。
[9] 黃思豪(2020)。角隅剪力連接器在填充型及包覆型SRC柱之剪力傳遞強度。臺北市:國立臺灣科技大學營建工程所碩士論文。
[10] Chen, C. C., Ko, J. W., Huang, G. L., & Chang, Y. M. (2012). Local buckling and concrete confinement of concrete-filled box columns under axial load. Journal of Constructional Steel Research, 78(1), 8-21.
[11] 黃苡寧(2016)。填充混凝土箱型鋼柱撓曲合成行為研究。臺北市:國立臺灣科技大學營建工程所碩士論文。
[12] 中華民國鋼結構協會(2019)。鋼結構極限設計法設計手冊(TISC-020-2019)。臺北市:中華民國鋼結構協會。
[13] 中華民國鋼結構協會(2019)。冷軋及冷沖壓鋼管柱接頭之設計與施工參考手冊(TISC-025-2019)。臺北市:中華民國鋼結構協會。
[14] 中華民國鋼結構協會(2020)。鋼管結構接頭設計與施工手冊(TISC-026-2020)。臺北市:中華民國鋼結構協會。
[15] 中華民國內政部營建署、中華民國鋼結構協會(2011)。鋼骨鋼筋混凝土構造設計規範與解說。臺北市:中華民國鋼結構協會。
[16] 中華民國內政部營建署、中華民國鋼結構協會(2010)。鋼結構極限設計法規範及解說。臺北市:中華民國鋼結構協會。
[17] XTRACT (2002). Imbsen Software Systems. California, USA.
[18] Hognestad, E., Hanson, N. W., & McHenry, D. (1955). Concrete Stress Distribution in Ultimate Strength Design. American Concrete Institute Journal, 52(12), 455-480.
[19] 中國土木水利工程學會(2011)。混凝土工程設計規範與解說(土木401-100)。臺北市:混凝土工程委員會。
[20] CNS 14842(2004)。高流動性混凝土坍流度試驗法。經濟部標準檢驗局。
[21] CNS 14840(2004)。自充填混凝土障礙通過性試驗法(U形或箱形法)。經濟部標準檢驗局。
[22] CNS 14841(2014)。自充填混凝土流下性試驗法(漏斗法)。經濟部標準檢驗局。
[23] AISC 341-16 (2016). Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction, ANSI/AISC 341-16.
[24] ACI 318-14 (2014). Building code requirements for structural concrete. American Concrete Institute.
[25] CNS 13812(2014)。建築結構用軋鋼料。經濟部標準檢驗局。
[26] ASTM A572 (2016). Standard specification for high-strength low-alloy Columbium-Vanadium structural steel. West Conshohocken: ASTM. A572/A572M-15.
[27] Chen, C. C., Wu, P. D., & Zhang, G. Y. (2022). New type of shear connector for square concrete-filled tubular columns. Advances in Structural Engineering, 0(0), 1-16.
[28] Slobodan, R., & Dragoljub, D. (2002). Static Strength of the Shear Connectors in steel-concrete composite beams. Architecture and Civil Engineering, 2(4), 251-259.
[29] Shakir-Khalil, H. (1993). Pushout Strength of Concrete-Filled Steel Hollow Sections. The Structural Engineer, 71(13), 230-243.
[30] Feng, R., Chen, Y., He, K., Wei, J., Chen, B., & Zhang, X. (2018). Push-out tests of concrete-filled stainless steel SHS tubes. Journal of Constructional Steel Research, 145, 58-69.
[31] Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, 57, 1041-1080.
[32] Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66, 198-212.
[33] Dongyan, X., Yuqing, L., Zhen, Y., & Jun, H. (2012). Static behavior of multi-stud shear connectors for steel-concrete composite bridge. Journal of Constructional Steel Research, 74, 1-7.
[34] Tao, Z., Song, T. Y., Uy, B., & Han, L. H. (2016). Bond behavior in concrete-filled steel tubes. Journal of Constructional Steel Research, 120, 81-93.
[35] Shen, M. H., & Chung, K. F. (2017). Experimental investigation into stud shear connections under combined shear and tension forces. Journal of Constructional Steel Research, 133, 434-447.
[36] Wang, J., Xu, Q., Yao, Y., Qi, J., & Xiu, H. (2018). Static behavior of grouped large headed stud-UHPC shear connectors in composite structures. Composite Structures, 206, 202-214.
[37] Kumar, P., & Chaudhary, S. (2019). Effect of reinforcement detailing on performance of composite connections with headed studs. Engineering Structures, 179, 476-492.

QR CODE