簡易檢索 / 詳目顯示

研究生: 鄧永傑
Yong-Jie Deng
論文名稱: 無標記運動分析系統之驗證和自動量化單腳及雙腳落地錯誤評分系統之開發
Validation of Markerless Motion Analysis System and Development of Automated Quantification of Unilateral and Bilateral Landing Error Scoring System
指導教授: 許維君
Wei-Chun Hsu
口試委員: 許維君
Wei-Chun Hsu
林儀佳
Lin, Yi-Jia
劉益宏
Yi-Hung Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 153
中文關鍵詞: 落地錯誤評分系統慣性感測器無標記信度效度
外文關鍵詞: Landing Error Scoring System, Inertial Measurement Unit, Markerless, Reliability, Validity
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為使用慣性感測器(IMU)在落地評分錯誤系統(LESS)上實踐,並驗證不同分析方式計算/預測(量測)到的運動學參數,針對不同時間點量測的數值做信效度的分析,並將量測的運動學參數用在LESS自動量化給分程式中進行給分,最後與不同分析方式的自動量化之LESS分數相比,哪一種分析方式與專家分析給出的結果最接近。本研究招募了19名受試者,健康男性13名、女性6名,男性前十字韌帶1名、男性前十字韌帶重建1名,本研究並沒有針對族群的差異進行探討所以不進行族群分組。使用三維動作分析系統(Qualisys)、慣性感測器(Delsys Avanti)及高速攝影機(GoPro)來收集受試者在跳躍落地時的運動情形,透過四種分析方式(二維影像、三維動作、人體姿勢骨架及IMU預測模型)來量測關節角度,最後將得到的關節角度放入MATLAB自動給分程式進行LESS給分。並使用了組內相關數(ICC)、布蘭德-奧茲曼圖及無母數統計-威爾卡森符號檢定進行四種分析方式在不同時間點(第一次落地(IC1)、最大膝關節屈曲(MKF1)、兩個時間的角度差異(ROM))的矢狀面關節角度量測數值之信效度。除了在第一次實驗的單腳落地之軀幹在IC1的IMU預測模型、第二次實驗的雙腳落地之左側髖關節在IC1時二維影像及左側膝關節在IC1時的人體姿勢骨架呈現差的相關性以外其餘的分析方式量測角度都有中等至極好的相關性。觀察布蘭德-奧茲曼圖上可以發現大多數分析方式與三維動作相比,量測的角度誤差都有落在1.96倍的標準差範圍內,與三維動作相比,在第二次實驗時二維影像分析的右側單腳落地的軀幹角度、人體姿勢骨架分析在雙腳落地時髖關節與膝關節角度以及在第一次與第二次實驗的IMU預測模型分析雙腳落地時髖關節與膝關節較沒有顯著差異,其餘的分析方式量測的角度多數呈現顯著差異(p<0.05),自動評分系統的評分表現以右側雙腳落地時不同分析自動評分系統表現與專家評分相近,IMU預測模型給分的結果也比人體自姿勢骨架接近專家給分。在IMU預測模型進行LESS給分時,膝關節外翻、站立時寬度及整體印象的觀察等項目無法透過關節角度去判斷之外,其餘的項目都可以實現LESS評分。未來用自動化評分時,可以針對使用的族群設定適合的閾值,在合理的閾值下可以使LESS用於預防傷害的功用發揮到最大。


    The purpose of this study is to use the Inertial Measurement Unit (IMU) to practice the LESS system, and verify the kinematics parameters calculated/predicted (measured) by different analysis methods. The reliability and validity of the measured values at other time points are analyzed, and the measured kinematic parameters are used in the LESS automatic quantification program for scoring. Finally, compared with the fewer scores automatically quantified by different analysis methods, which analysis method is closest to the results given by expert analysis? In this study, 19 subjects were recruited, including 13 healthy men and 6 women, 1 male with anterior cruciate ligament reconstruction and 1 male with anterior cruciate ligament reconstruction. This study did not discuss the difference in group effect, so there was no racial division. A three-dimensional motion analysis system (Qualisys), IMU sensor (Delsys Avanti), and high-speed cameras (GoPro) are used to collect the movements of the subjects during the jump landing task. Four analysis methods (2D image, 3D motion, human posture skeleton tracking, and IMU prediction model) were used to measure the joint angles. Finally, the obtained joint angles are input into MATLAB, and the subprogram is scored automatically. Intraclass Correlation Coefficient (ICC), Bland-Altman plots, and Non-parameter Statistics: Wilcoxon Signed-rank Test were used to analyze the reliability and validity of sagittal joint angle measurements at different time points (Initial contact (IC), Maximum Knee Flexion (MKF) and the angle difference between IC and MKF (ROM)). Except for the IMU prediction model of the trunk with unilateral landing in IC1 in the first experiment, the 2D image of the left hip joint with bilateral landing in IC1 in the second experiment, and the poor correlation of the human posture skeleton of the left knee joint in IC1, all the other analysis methods have moderate to excellent correlation. By observing the Bland-Altman plots, it can be found that compared with the 3D motion, the measured angle value error of most analysis methods falls within the standard deviation of 1.96 times. Compared with the three-dimensional movement, the two-dimensional image analysis of the torso angle of the right single foot landing in the second experiment, the human posture skeleton analysis of the hip and knee joint angles when the two feet landed, and the first and second experiments. There was no significant difference between the hip joint and the knee joint when the two feet landed on the IMU prediction model, and most of the angles measured by the other analysis methods showed significant differences
    III
    (p<0.05). The scoring performance of the automatic scoring system is similar to the expert scoring based on different analyses when the right-side bilateral, and the results given by the IMU prediction model are also closer to the expert scoring than the human body self-pose skeleton. When the IMU prediction model is used for LESS scoring, items such as knee valgus, standing width, and overall impression cannot be scored by the joint angle, and the rest of the items can achieve LESS scoring. In the future, when automatic scoring is used, appropriate thresholds can be set for the groups used, and under a reasonable threshold, the function of LESS for injury prevention can be maximized.

    目錄 中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章、緒論 1 1.1 前言 1 1.2 研究目的 3 1.3 研究假設 3 第二章、文獻回顧 4 2.1 常見的下肢傷害風險及評估風險的動作 4 2.1.1 常見的下肢傷害 4 2.1.2 評估傷害風險動作 9 2.1.3 常見的跳躍落地任務 10 2.1.4 單腳的重要性 12 2.1.5 單腳與雙腳的研究結果比較 13 2.2 落地錯誤評分系統(Landing Error Scoring System) 16 2.2.1 LESS種類的介紹 16 2.2.2 LESS項目的探討與影響評分的因素 20 2.2.3 LESS被質疑的部分 23 2.2.4 LESS自動化相關應用 26 第三章、研究方法 28 3.1 受試者 28 3.2 實驗設備 28 3.2.1 穿戴式系統 28 3.2.2 動作分析系統 28 3.2.3 高速攝影系統 30 3.2.4 跳躍平台 30 3.2 實驗流程 31 3.3.1 實驗室硬體系統校正 32 3.3.2 設置高速攝影系統及跳躍平台 34 3.3.3 受試者準備與靜態校正 35 3.3.4 實驗動作說明 36 3.3.5 定義各關節名稱及關節在不同平面活動名稱 38 3.3.6 落地錯誤評分系統 ( LESS ) 評分項目 39 3.3.6.1 動作週期 39 3.3.6.2 雙腳落地錯誤評分系統 40 3.3.6.3 單腳落地錯誤評分系統 40 3.3 資料分析 41 3.4.1 二維影像分析 41 3.4.2 三維動作分析 42 3.4.3 人體姿勢骨架分析 44 3.4.4 IMU預測模型分析 47 3.4.5 自動評分程式說明 48 3.4 統計分析 58 第四章、結果與討論 59 4.1 受試者資料 59 4.2 不同分析方式之運動學結果 60 4.2.1 三維動作分析 60 4.2.2 二維影像分析 61 4.2.3 人體姿勢骨架分析 62 4.2.4 IMU預測模型分析 63 4.2.5 信度效度結果 64 4.2.5.1 信度分析 64 4.2.5.2 效度分析 69 4.3 LESS與ULESS評分結果 74 4.3.1 專家評分 74 4.3.2 自動程式評分 76 4.3.2.1 三維動作分析 76 4.3.2.2 人體姿勢骨架分析 79 4.3.2.3 IMU預測模型分析 80 4.3.3 專家評分與自動化評分的比較 81 第五章、結論與未來展望 86 參考文獻 87 附件1、LESS與ULESS各項評分說明 100 附件2、各項分析結果之統計圖與統計表 111 附件3、人體試驗委員會同意書 205   圖目錄 圖 2.1、以機械模型示意切割和落地前十字韌帶損傷期間的膝關節負荷(Timothy E Hewett & Gregory D Myer, 2011) 5 圖 2.2、三種跳躍方式示意圖(Miyamoto & Yanagiya, 2016) 11 圖 2.3、三種落地的示意圖(Cruz et al., 2013) 11 圖 2.4、停止-跳躍任務動作示意圖(Ma et al., 2022) 12 圖 2.5、落地錯誤評分系統(LESS)項目評分說明 (Padua et al., 2009) 17 圖 2.6、落地錯誤即時評分系統(LESS-RT)項目評分說明 (Padua et al., 2011) 18 圖 2.7、i-落地錯誤評分系統(i-LESS)各評分項目說明 (Cortes & Onate, 2013) 18 圖 2.8、單腳落地錯誤評分系統(SL-LESS)項目評分說明 (De Blaiser et al., 2022) 19 圖 2.9、接收者操作特徵曲線中LESS總得分的切割點(Padua et al., 2015) 20 圖 2.10、ACLR與CTRL患者在疲勞前後對LESS得分的中位數和四分位數範圍(A. Gokeler et al., 2014) 21 圖 2.11、性別和疲勞前後對落地錯誤評分系統評分的影響(Wesley et al., 2015) 22 圖 2.12、男性和女性在不同落地表面上落地反向跳的LESS等級(Jacobs et al., 2021) 23 圖 2.13、落地錯誤評分系統可靠性相關研究的總結(Hanzlíková & Hébert-Losier, 2020) 24 圖 2.14、LESS-RT 評分和 (a) 膝關節損傷、(b) 前十字韌帶、(c) 半月板損傷 發生率的接收操作者特徵曲線。(Schwartz et al., 2020) 25 圖 3.1、穿戴式慣性傳感器(Delsys Avanti) 28 圖 3.2、動作分析系統硬體設備 29 圖 3.3、動作分析系統硬體架構圖 29 圖 3.4、GoPro Hero Black 運動攝影機 30 圖 3.5、跳躍平台(墊圈及韻律階梯踏板) 30 圖 3.6、實驗流程 31 圖 3.7、 校正器 32 圖 3.8、反光球模式 33 圖 3.9、校正之殘影誤差值報告 33 圖 3.10、實驗最佳量測空間 33 圖 3.11、擺放高速攝影系統及跳躍平台的位置 34 圖 3.12、黏貼IMU設備及反光球位置 35 圖 3.13、受試者靜態校正 35 圖 3.14、雙腳跳躍落地任務動作圖示 36 圖 3.15、單腳跳躍落地任務動作圖示 37 圖 3.16、雙腳跳躍落地任務動作週期示意圖 39 圖 3.17、單腳跳躍落地任務動作週期示意圖 39 圖 3.18、在PowerPoint上繪製輔助線 41 圖 3.19、使用Image J計算關節及肢段角度 41 圖 3.20、數學模型骨架 43 圖 3.21、使用Visual 3D 計算出關節角度數據 44 圖 3.22、Blazepose/Mediapipe 模型的33個輸出關鍵點 45 圖 3.23、人體姿態估計流程概述 46 圖 3.24、模型訓練的輸入與輸出數據示意圖 47 圖 3.25、TT與MTH對於實驗室坐標示意圖 50 圖 3.26、骨盆傾斜角度示意圖 54 圖 4.1、三維動作分析各個關節肢段角度 60 圖 4.2、影像分析結果 61 圖 4.3、 MediaPipe Pose 追蹤關節肢段點及角度結果 62 圖 4.4、 透過模型預測IMU的結果 63 圖 4.5、右腳LESS各項評分百分比 74 圖 4.6、左腳LESS各項評分百分比 75 圖 4.7、右腳ULESS各項評分百分比 75 圖 4.8、左腳ULESS各項評分百分比 76 圖 4.9、右腳LESS各項評分百分比 77 圖 4.10、左腳LESS各項評分百分比 77 圖 4.11、右腳ULESS各項評分百分比 78 圖 4.12、左腳ULESS各項評分百分比 78 圖 4.13、右腳LESS各項評分百分比 79 圖 4.14、左腳LESS各項評分百分比 79 圖 4.15、IMU 預測模型自動給分之LESS / ULESS的各項評分百分比 80 圖 4.16、雙腳落地以右腳為測試腳各項評分LESS的錯誤頻率 82 圖 4.17、雙腳落地以左腳為測試腳各項評分LESS的錯誤頻率 83 圖 4.18、單腳落地以右腳為測試腳各項評分ULESS的錯誤頻率 84 圖 4.19、雙腳落地以左腳為測試腳各項評分ULESS的錯誤頻率 85   表目錄 表 2 1、LESS各項評估與常見的運動傷害相關性之文獻回顧 9 表 3 1、以右腳為例的各關節活動名稱 38 表 3 2、數學模型標記點名稱對照表 43 表 3 3、設備位置的旋轉座標軸定義 48 表 3 4、LESS與ULESS定義關節變化角度多寡的閾值 56 表 4 1、受試者資料表 59

    參考文獻
    Ancillao, A., Tedesco, S., Barton, J., & O'Flynn, B. (2018). Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. Sensors (Basel), 18(8). doi:10.3390/s18082564
    Arendt, E., & Dick, R. (1995). Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med, 23(6), 694-701. doi:10.1177/036354659502300611
    Arundale, A. J. H., Silvers-Granelli, H. J., Marmon, A., Zarzycki, R., Dix, C., & Snyder-Mackler, L. (2018). Changes in biomechanical knee injury risk factors across two collegiate soccer seasons using the 11+ prevention program. Scand J Med Sci Sports, 28(12), 2592-2603. doi:10.1111/sms.13278
    Ball, N. B., & Zanetti, S. (2012). Relationship between reactive strength variables in horizontal and vertical drop jumps. The Journal of Strength & Conditioning Research, 26(5), 1407-1412.
    Barber, S. D., Noyes, F. R., Mangine, R. E., & Hartman, W. (1990). Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clinical Orthopaedics and Related Research (1976-2007), 255, 204-214.
    Bates, N. A., Ford, K. R., Myer, G. D., & Hewett, T. E. (2013). Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clinical Biomechanics, 28(7), 796-799.
    Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., & Grundmann, M. (2020). Blazepose: On-device real-time body pose tracking. arXiv preprint arXiv:2006.10204.
    Beese, M. E., Joy, E., Switzler, C. L., & Hicks-Little, C. A. (2015). Landing Error Scoring System Differences Between Single-Sport and Multi-Sport Female High School-Aged Athletes. J Athl Train, 50(8), 806-811. doi:10.4085/1062-6050-50.7.01
    Bell, D. R., Smith, M. D., Pennuto, A. P., Stiffler, M. R., & Olson, M. E. (2014). Jump-landing mechanics after anterior cruciate ligament reconstruction: a landing error scoring system study. Journal of athletic training, 49(4), 435-441.
    Bennell, K., Crossley, K., Jayarajan, J., Walton, E., Warden, S., Kiss, Z. S., & Wrigley, T. (2004). Ground reaction forces and bone parameters in females with tibial stress fracture. Medicine and science in sports and exercise, 36(3), 397-404.
    Benson, L. C., Clermont, C. A., Bosnjak, E., & Ferber, R. (2018). The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait & Posture, 63, 124-138. doi:10.1016/j.gaitpost.2018.04.047
    Beynnon, B. D., & Fleming, B. C. (1998). Anterior cruciate ligament strain in-vivo: a review of previous work. Journal of Biomechanics, 31(6), 519-525.
    Biese, K. M., Pietrosimone, L. E., Andrejchak, M., Lynall, R. C., Wikstrom, E. A., & Padua, D. A. (2019). Preliminary investigation on the effect of cognition on jump-landing performance using a clinically relevant setup. Measurement in Physical Education and Exercise Science, 23(1), 78-88.
    Bigouette, J., Simon, J., Liu, K., & Docherty, C. L. (2016). Altered vertical ground reaction forces in participants with chronic ankle instability while running. Journal of athletic training, 51(9), 682-687.
    Boden, B. P., Dean, G. S., Feagin, J. A., & Garrett, W. E. (2000). Mechanisms of anterior cruciate ligament injury. In (Vol. 23, pp. 573-578): SLACK Incorporated Thorofare, NJ.
    Boden, B. P., Sheehan, F. T., Torg, J. S., & Hewett, T. E. (2010). Non-contact ACL injuries: mechanisms and risk factors. The Journal of the American Academy of Orthopaedic Surgeons, 18(9), 520.
    Boden, B. P., Torg, J. S., Knowles, S. B., & Hewett, T. E. (2009). Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. The American Journal of Sports Medicine, 37(2), 252-259.
    Boling, M. C., Padua, D. A., Marshall, S. W., Guskiewicz, K., Pyne, S., & Beutler, A. (2009). A Prospective Investigation of Biomechanical Risk Factors for Patellofemoral Pain Syndrome: The Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) Cohort. The American Journal of Sports Medicine, 37(11), 2108-2116.
    Bredt, S. d. G. T., Chagas, M. H., Peixoto, G. H., Menzel, H. J., & de Andrade, A. G. P. (2020). Understanding player load: Meanings and limitations. Journal of Human Kinetics, 71(1), 5-9.
    Brown, T. N., Palmieri-Smith, R. M., & McLean, S. G. (2009). Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. British Journal of Sports Medicine, 43(13), 1049-1056. Retrieved from https://bjsm.bmj.com/content/43/13/1049.long
    Burnham, J. M., Yonz, M. C., Robertson, K. E., McKinley, R., Wilson, B. R., Johnson, D. L., . . . Noehren, B. (2016). Relationship of Hip and Trunk Muscle Function with Single Leg Step-Down Performance: Implications for Return to Play Screening and Rehabilitation. Phys Ther Sport, 22, 66-73. doi:10.1016/j.ptsp.2016.05.007
    Cameron, K. L., Peck, K. Y., Davi, S. M., Owens, C., Svoboda, C., DiStefano, L. J., . . . Padua, D. A. (2022). Association Between Landing Error Scoring System (LESS) Items and the Incidence Rate of Lower Extremity Stress Fracture. Orthop J Sports Med, 10(6), 23259671221100790. doi:10.1177/23259671221100790
    Cameron, K. L., Peck, K. Y., Owens, B. D., Svoboda, S. J., DiStefano, L. J., Marshall, S. W., . . . Padua, D. A. (2014). Landing error scoring system (LESS) items are associated with the incidence rate of lower extremity stress fracture. Orthopaedic Journal of Sports Medicine, 2(7_suppl2), 2325967114S2325900080.
    Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Caulfield, B., & Garrett, M. (2002). Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. International journal of sports medicine, 23(01), 64-68.
    Caulfield, B., & Garrett, M. (2004). Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clinical Biomechanics, 19(6), 617-621. doi:https://doi.org/10.1016/j.clinbiomech.2004.03.001
    Chaaban, C. R., Berry, N. T., Armitano-Lago, C., Kiefer, A. W., Mazzoleni, M. J., & Padua, D. A. (2021). Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors (Basel), 21(13). doi:10.3390/s21134383
    Chappell, J. D., Creighton, R. A., Giuliani, C., Yu, B., & Garrett, W. E. (2007). Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 35(2), 235-241.
    Chen, W. H., Lee, Y. S., Yang, C. J., Chang, S. Y., Shih, Y., Sui, J. D., . . . Shiang, T. Y. (2020). Determining motions with an IMU during level walking and slope and stair walking. J Sports Sci, 38(1), 62-69. doi:10.1080/02640414.2019.1680083
    Chijimatsu, M., Ishida, T., Yamanaka, M., Taniguchi, S., Ueno, R., Ikuta, R., . . . Tohyama, H. (2020). Landing instructions focused on pelvic and trunk lateral tilt decrease the knee abduction moment during a single-leg drop vertical jump. Phys Ther Sport, 46, 226-233. doi:10.1016/j.ptsp.2020.09.010
    Clayton, R. A., & Court-Brown, C. M. (2008). The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury, 39(12), 1338-1344. Retrieved from https://www.injuryjournal.com/article/S0020-1383(08)00298-2/fulltext
    Cole, G., Nigg, B., Ronsky, J., & Yeadon, M. (1993). Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal.
    Cortes, N., & Onate, J. (2013). Clinical assessment of drop-jump landing for determination of risk for knee injury. International Journal of Athletic Therapy and Training, 18(3), 10-13.
    Cruz, A., Bell, D., McGrath, M., Blackburn, T., Padua, D., & Herman, D. (2013). The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research. Res Sports Med, 21(4), 330-342. Retrieved from https://www.tandfonline.com/doi/full/10.1080/15438627.2013.825798
    Dai, B., Butler, R. J., Garrett, W. E., & Queen, R. M. (2014). Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scand J Med Sci Sports, 24(6), 974-981. Retrieved from https://onlinelibrary.wiley.com/doi/10.1111/sms.12118
    Dai, B., Garrett, W. E., Gross, M. T., Padua, D. A., Queen, R. M., & Yu, B. (2019). The effect of performance demands on lower extremity biomechanics during landing and cutting tasks. J Sport Health Sci, 8(3), 228-234.
    Dar, G., Yehiel, A., & Cale' Benzoor, M. (2019). Concurrent criterion validity of a novel portable motion analysis system for assessing the landing error scoring system (LESS) test. Sports Biomech, 18(4), 426-436. doi:10.1080/14763141.2017.1412495
    De Blaiser, C., De Ridder, R., Willems, T., Vanden Bossche, L., Danneels, L., & Roosen, P. (2019). Impaired Core Stability as a Risk Factor for the Development of Lower Extremity Overuse Injuries: A Prospective Cohort Study. Am J Sports Med, 47(7), 1713-1721. doi:10.1177/0363546519837724
    De Blaiser, C., Roosen, P., Vermeulen, S., De Bleecker, C., & De Ridder, R. (2022). The development of a clinical screening tool to evaluate unilateral landing performance in a healthy population. Phys Ther Sport, 55, 309-315. doi:10.1016/j.ptsp.2022.05.012
    Decker, M. J., Torry, M. R., Noonan, T. J., Riviere, A., & Sterett, W. I. (2002). Landing adaptations after ACL reconstruction. Medicine and science in sports and exercise, 34(9), 1408-1413.
    DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S., & Garrett, W. (2004). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med, 32(2), 477-483. doi:10.1177/0363546503258928
    Dempsey, A. R., Elliott, B. C., Munro, B. J., Steele, J. R., & Lloyd, D. G. (2012). Whole body kinematics and knee moments that occur during an overhead catch and landing task in sport. Clinical Biomechanics, 27(5), 466-474. Retrieved from https://core.ac.uk/download/11239275.pdf
    Devita, P., & Skelly, W. A. (1992). Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc, 24(1), 108-115.
    Dierks, T. A., Manal, K. T., Hamill, J., & Davis, I. S. (2008). Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. Journal of Orthopaedic & Sports Physical Therapy, 38(8), 448-456.
    DiStefano, L. J., Padua, D. A., DiStefano, M. J., & Marshall, S. W. (2009). Influence of age, sex, technique, and exercise program on movement patterns after an anterior cruciate ligament injury prevention program in youth soccer players. The American journal of sports medicine, 37(3), 495-505. Retrieved from https://journals.sagepub.com/doi/10.1177/0363546508327542?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
    Doherty, C., Bleakley, C., Hertel, J., Caulfield, B., Ryan, J., & Delahunt, E. (2016). Recovery From a First-Time Lateral Ankle Sprain and the Predictors of Chronic Ankle Instability: A Prospective Cohort Analysis. Am J Sports Med, 44(4), 995-1003. doi:10.1177/0363546516628870
    Donohue, M. R., Ellis, S. M., Heinbaugh, E. M., Stephenson, M. L., Zhu, Q., & Dai, B. (2015). Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks. Res Sports Med, 23(4), 394-411. Retrieved from https://www.tandfonline.com/doi/full/10.1080/15438627.2015.1076413
    Drewes, L. K., McKeon, P. O., Kerrigan, D. C., & Hertel, J. (2009). Dorsiflexion deficit during jogging with chronic ankle instability. J Sci Med Sport, 12(6), 685-687. doi:10.1016/j.jsams.2008.07.003
    Earl, J. E., Monteiro, S. K., & Snyder, K. R. (2007). Differences in lower extremity kinematics between a bilateral drop-vertical jump and a single-leg step-down. Journal of Orthopaedic & Sports Physical Therapy, 37(5), 245-252.
    Ebben, W. P., Flanagan, E., & Jensen, R. L. (2009). Bilateral facilitation and laterality during the countermovement jump. Perceptual and Motor Skills, 108(1), 251-258.
    Eckard, T. G., Miraldi, S. F. P., Peck, K. Y., Posner, M. A., Svoboda, S. J., DiStefano, L. J., . . . Cameron, K. L. (2022). Automated Landing Error Scoring System Performance and the Risk of Bone Stress Injury in Military Trainees. J Athl Train, 57(4), 334-340. doi:10.4085/1062-6050-0263.21
    Ekegren, C. L., Miller, W. C., Celebrini, R. G., Eng, J. J., & Macintyre, D. L. (2009). Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther, 39(9), 665-674. doi:10.2519/jospt.2009.3004
    Everard, E., Lyons, M., & Harrison, A. J. (2018). Examining the association of injury with the Functional Movement Screen and Landing Error Scoring System in military recruits undergoing 16 weeks of introductory fitness training. Journal of science and medicine in sport, 21(6), 569-573.
    eyhen D, B. M., Deuster P, Baumgartner N, Beutler AI, de la Motte SJ, Jones BH, Lisman P, Padua DA, Pendergrass TL, Pyne SW, Schoomaker E, Sell TC, O'Connor F. . (2014). Consortium for health and military performance and American College of Sports Medicine Summit: utility of functional movement assessment in identifying musculoskeletal injury risk. Current sports medicine reports, 13(1), 52-63.
    Fadaei Dehcheshmeh, P., Gandomi, F., & Maffulli, N. (2021). Effect of lumbopelvic control on landing mechanics and lower extremity muscles' activities in female professional athletes: implications for injury prevention. BMC Sports Sci Med Rehabil, 13(1), 101. doi:10.1186/s13102-021-00331-y
    Fernandez, W. G., Yard, E. E., & Comstock, R. D. (2007). Epidemiology of lower extremity injuries among US high school athletes. Academic emergency medicine, 14(7), 641-645.
    Ford, K. R., Myer, G. D., & Hewett, T. E. (2007). Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med Sci Sports Exerc, 39(11), 2021-2028. doi:10.1249/mss.0b013e318149332d
    Fox, A., Bonacci, J., McLean, S., & Saunders, N. (2017). Efficacy of ACL injury risk screening methods in identifying high‐risk landing patterns during a sport‐specific task. Scandinavian journal of medicine & science in sports, 27(5), 525-534.
    Fox, A. S., Bonacci, J., McLean, S. G., & Saunders, N. (2017). Efficacy of ACL injury risk screening methods in identifying high-risk landing patterns during a sport-specific task. Scandinavian journal of medicine & science in sports, 27(5), 525-534. doi:https://doi.org/10.1111/sms.12715
    Garbenytė-Apolinskienė, T., Šiupšinskas, L., Salatkaitė, S., Gudas, R., & Radvila, R. (2018). The effect of integrated training program on functional movements patterns, dynamic stability, biomechanics, and muscle strength of lower limbs in elite young basketball players. Sport Sciences for Health, 14(2), 245-250.
    Ghislieri, M., Gastaldi, L., Pastorelli, S., Tadano, S., & Agostini, V. (2019). Wearable inertial sensors to assess standing balance: A systematic review. Sensors, 19(19), 4075.
    Giavarina, D. (2015). Understanding Bland Altman analysis. Biochem Med (Zagreb), 25(2), 141-151. doi:10.11613/BM.2015.015
    Goerger, B. M., Marshall, S. W., Beutler, A. I., Blackburn, J. T., Wilckens, J. H., & Padua, D. A. (2015). Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med, 49(3), 188-195. doi:10.1136/bjsports-2013-092982
    Gokeler, A., Eppinga, P., Dijkstra, P., Welling, W., Padua, D., Otten, E., & Benjaminse, A. (2014). Effect of fatigue on landing performance assessed with the landing error scoring system (less) in patients after ACL reconstruction. A pilot study. International Journal of Sports Physical Therapy, 9(3), 302.
    Gokeler, A., Eppinga, P., Dijkstra, P. U., Welling, W., Padua, D. A., Otten, E., & Benjaminse, A. (2014). Effect of fatigue on landing performance assessed with the landing error scoring system (less) in patients after ACL reconstruction. A pilot study. International journal of sports physical therapy, 9(3), 302-311. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24944848
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060307/
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060307/pdf/ijspt-05-302.pdf
    Hébert-Losier, K., Hanzlíková, I., Zheng, C., Streeter, L., & Mayo, M. (2020). The ‘DEEP’ Landing Error Scoring System. Applied Sciences, 10(3). doi:10.3390/app10030892
    Hanzlikova, I., Athens, J., & Hebert-Losier, K. (2020). Clinical implications of Landing Error Scoring System calculation methods. Phys Ther Sport, 44, 61-66. doi:10.1016/j.ptsp.2020.04.035
    Hanzlikova, I., Athens, J., & Hebert-Losier, K. (2021). Factors influencing the Landing Error Scoring System: Systematic review with meta-analysis. J Sci Med Sport, 24(3), 269-280. doi:10.1016/j.jsams.2020.08.013
    Hanzlikova, I., Richards, J., Athens, J., & Hebert-Losier, K. (2021). Which jump-landing task best represents lower extremity and trunk kinematics of unanticipated cutting maneuver? Gait Posture, 85, 171-177. doi:10.1016/j.gaitpost.2021.02.003
    Hanzlíková, I., & Hébert-Losier, K. (2020). Is the Landing Error Scoring System reliable and valid? A systematic review. Sports Health, 12(2), 181-188. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040940/pdf/10.1177_1941738119886593.pdf
    Hanzlíková, I., Richards, J., & Hébert-Losier, K. (2022). Preliminary Scoring Template of a Modified Landing Error Scoring System. Acta Scientific Orthopaedics, 5(2), 4-14.
    Harriss, J., Khan, A., Song, K., Register-Mihalik, J. K., & Wikstrom, E. A. (2019). Clinical movement assessments do not differ between collegiate athletes with and without chronic ankle instability. Phys Ther Sport, 36, 22-27. doi:10.1016/j.ptsp.2018.12.009
    Hartung, V., Sarshar, M., Karle, V., Shammas, L., Rashid, A., Roullier, P., . . . Tallner, A. (2020). Validity of Consumer Activity Monitors and an Algorithm Using Smartphone Data for Measuring Steps during Different Activity Types. International Journal of Environmental Research and Public Health, 17(24). doi:10.3390/ijerph17249314
    Heebner, N. R., Rafferty, D. M., Wohleber, M. F., Simonson, A. J., Lovalekar, M., Reinert, A., & Sell, T. C. (2017). Landing Kinematics and Kinetics at the Knee During Different Landing Tasks. J Athl Train, 52(12), 1101-1108. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763249/pdf/i1062-6050-52-12-1101.pdf
    Hewett, T. E., & Myer, G. D. (2011). The Mechanistic Connection Between the Trunk, Hip, Knee, and Anterior Cruciate Ligament Injury. Exercise and Sport Sciences Reviews, 39(4), 161-166. doi:10.1097/JES.0b013e3182297439
    Hewett, T. E., & Myer, G. D. (2011). The mechanistic connection between the trunk, knee, and anterior cruciate ligament injury. Exercise and Sport Sciences Reviews, 39(4), 161.
    Hewett, T. E., Myer, G. D., & Ford, K. R. (2006). Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. The American Journal of Sports Medicine, 34(2), 299-311.
    Hewett, T. E., Myer, G. D., Ford, K. R., Heidt Jr, R. S., Colosimo, A. J., McLean, S. G., . . . Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. The American journal of sports medicine, 33(4), 492-501.
    Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., . . . Succop, P. (2005). Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. The American Journal of Sports Medicine, 33(4), 492-501.
    Hewett, T. E., Torg, J. S., & Boden, B. P. (2009). Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. British Journal of Sports Medicine, 43(6), 417-422.
    Hirth, C. J. (2007). Clinical movement analysis to identify muscle imbalances and guide exercise. International Journal of Athletic Therapy and Training, 12(4), 10-14.
    Ishida, T., Yamanaka, M., Takeda, N., & Aoki, Y. (2014). Knee rotation associated with dynamic knee valgus and toe direction. The Knee, 21(2), 563-566.
    Jacobs, K., Riveros, D., Vincent, H. K., & Herman, D. C. (2021). The effect of landing surface on landing error scoring system grades. Sports Biomech, 20(2), 190-197. doi:10.1080/14763141.2018.1535617
    Johnston, W., O'Reilly, M., Argent, R., & Caulfield, B. (2019). Reliability, Validity and Utility of Inertial Sensor Systems for Postural Control Assessment in Sport Science and Medicine Applications: A Systematic Review. Sports Medicine, 49(5), 783-818. doi:10.1007/s40279-019-01095-9
    Karandikar, N., & Vargas, O. O. O. (2011). Kinetic Chains: A Review of the Concept and Its Clinical Applications. PM&R, 3(8), 739-745.
    Khuu, S., Musalem, L. L., & Beach, T. A. (2015). Verbal Instructions Acutely Affect Drop Vertical Jump Biomechanics--Implications for Athletic Performance and Injury Risk Assessments. J Strength Cond Res, 29(10), 2816-2826. doi:10.1519/JSC.0000000000000938
    Kim, J., Colabianchi, N., Wensman, J., & Gates, D. H. (2020). Wearable Sensors Quantify Mobility in People With Lower Limb Amputation During Daily Life. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 28(6), 1282-1291. doi:10.1109/tnsre.2020.2990824
    Kobsar, D., Olson, C., Paranjape, R., Hadjistavropoulos, T., & Barden, J. M. (2014). Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture, 39(1), 553-557. doi:10.1016/j.gaitpost.2013.09.008
    Kockum, B., & Annette, I.-L. H. (2015). Hop performance and leg muscle power in athletes: reliability of a test battery. Physical Therapy in Sport, 16(3), 222-227.
    Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., . . . Krosshaug, T. (2010). Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations from Female Team Handball and Basketball. The American Journal of Sports Medicine, 38(11), 2218-2225. doi:10.1177/0363546510373570
    Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med, 15(2), 155-163. doi:10.1016/j.jcm.2016.02.012
    Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., . . . Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. The American Journal of Sports Medicine, 35(3), 359-367.
    Krosshaug, T., Steffen, K., Kristianslund, E., Nilstad, A., Mok, K.-M., Myklebust, G., . . . Bahr, R. (2016). The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A Prospective Cohort Study of 710 Athletes. The American Journal of Sports Medicine, 44(4), 874-883. doi:10.1177/0363546515625048
    Kulas, A., Zalewski, P., Hortobagyi, T., & DeVita, P. (2008). Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings. J Biomech, 41(1), 180-185. doi:10.1016/j.jbiomech.2007.06.027
    Kulas, A. S., Hortobágyi, T., & DeVita, P. (2010). The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. Journal of athletic training, 45(1), 5-15.
    Kulas, A. S., Schmitz, R. J., Shultz, S. J., Henning, J. M., & Perrin, D. H. (2006). Sex-specific abdominal activation strategies during landing. Journal of athletic training, 41(4), 381.
    Lees, A. (1981). Methods of impact absorption when landing from a jump. Engineering in Medicine, 10(4), 207-211.
    Li, G., Rudy, T., Sakane, M., Kanamori, A., Ma, C., & Woo, S.-Y. (1999). The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics, 32(4), 395-400.
    Lohmander, L. S., Englund, P. M., Dahl, L. L., & Roos, E. M. (2007). The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med, 35(10), 1756-1769. doi:10.1177/0363546507307396
    Lohmander, L. S., Ostenberg, A., Englund, M., & Roos, H. (2004). High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum, 50(10), 3145-3152. doi:10.1002/art.20589
    Mørtvedt, A. I., Krosshaug, T., Bahr, R., & Petushek, E. (2020). I spy with my little eye … a knee about to go ‘pop’? Can coaches and sports medicine professionals predict who is at greater risk of ACL rupture? British Journal of Sports Medicine, 54(3), 154. doi:10.1136/bjsports-2019-100602
    Ma, W., Pan, C. Y., Diehl, L. H., Wittstein, J. R., Riboh, J. C., Toth, A. P., . . . Sell, T. C. (2022). Altered lower extremity biomechanics following anterior cruciate ligament reconstruction during single-leg and double-leg stop-jump tasks: A bilateral total support moment analysis. Clin Biomech (Bristol, Avon), 91, 105533. doi:10.1016/j.clinbiomech.2021.105533
    Maffulli, N., Bundoc, R. C., Chan, K. M., & Cheng, J. (1996). Paediatric sports injuries in Hong Kong: a seven year survey. British Journal of Sports Medicine, 30(3), 218-221. Retrieved from https://bjsm.bmj.com/content/bjsports/30/3/218.full.pdf
    Majewski, M., Susanne, H., & Klaus, S. (2006). Epidemiology of athletic knee injuries: A 10-year study. The Knee, 13(3), 184-188. doi:10.1016/j.knee.2006.01.005
    Makaruk, H., Sacewicz, T., Czaplicki, A., & Sadowski, J. (2010). Effect of additional load on power output during drop jump training. Journal of Human Kinetics, 26(1), 31-37.
    Malinzak, R. A., Colby, S. M., Kirkendall, D. T., Yu, B., & Garrett, W. E. (2001). A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical Biomechanics, 16(5), 438-445.
    Mauntel, T. C., Cameron, K. L., Pietrosimone, B., Marshall, S. W., Hackney, A. C., & Padua, D. A. (2021). Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment. J Athl Train. doi:10.4085/1062-6050-0023.20
    Mauntel, T. C., Padua, D. A., Stanley, L. E., Frank, B. S., DiStefano, L. J., Peck, K. Y., . . . Marshall, S. W. (2017). Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System. J Athl Train, 52(11), 1002-1009. doi:10.4085/1062-6050-52.10.12
    McCurdy, K., Walker, J., Armstrong, R., & Langford, G. (2014). Relationship between selected measures of strength and hip and knee excursion during unilateral and bilateral landings in women. The Journal of Strength & Conditioning Research, 28(9), 2429-2436.
    Menzel, H.-J., Chagas, M. H., Szmuchrowski, L. A., Araujo, S. R. S., de Andrade, A. G. P., & de Jesus-Moraleida, F. R. (2013). Analysis of Lower Limb Asymmetries by Isokinetic and Vertical Jump Tests in Soccer Players. The Journal of Strength & Conditioning Research, 27(5).
    Meylan, C., McMaster, T., Cronin, J., Mohammad, N. I., Rogers, C., & DeKlerk, M. (2009). Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. The Journal of Strength & Conditioning Research, 23(4), 1140-1147.
    Milner, C. E., Hamill, J., & Davis, I. (2007). Are knee mechanics during early stance related to tibial stress fracture in runners? Clinical Biomechanics, 22(6), 697-703.
    Milner, C. E., Hamill, J., & Davis, I. S. (2010). Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. J Orthop Sports Phys Ther, 40(2), 59-66. doi:10.2519/jospt.2010.3024
    Miyamoto, A. Y. A., & Yanagiya, T. (2016). Seasonal Changes in Physical Fitness of Adolescent Track and Field Athletes. Juntendo Medical Journal, 62(Suppl.1), 189-193. doi:10.14789/jmj.62.s189
    Mizner, R. L., Chmielewski, T. L., Toepke, J. J., & Tofte, K. B. (2012). Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med, 22(3), 221-227. doi:10.1097/JSM.0b013e31823a46ce
    Morgan, A. M., & O'Connor, K. M. (2019). Evaluation of an accelerometer to assess knee mechanics during a drop landing. J Biomech, 86, 125-131. doi:10.1016/j.jbiomech.2019.01.055
    Myer, G. D., Ford, K. R., Barber Foss, K. D., Goodman, A., Ceasar, A., Rauh, M. J., . . . Hewett, T. E. (2010). The incidence and potential pathomechanics of patellofemoral pain in female athletes. Clinical Biomechanics, 25(7), 700-707.
    Myer, G. D., Ford, K. R., Brent, J. L., & Hewett, T. E. (2007). Differential neuromuscular training effects onACL injury risk factors in" high-risk" versus" low-risk" athletes. BMC musculoskeletal disorders, 8(1), 1-7.
    Myer, G. D., Ford, K. R., & Hewett, T. E. (2008). Tuck jump assessment for reducing anterior cruciate ligament injury risk. Athletic therapy today: the journal for sports health care professionals, 13(5), 39.
    Newton, R. U., Gerber, A., Nimphius, S., Shim, J. K., Doan, B. K., Robertson, M., . . . Kraemer, W. J. (2006). Determination of functional strength imbalance of the lower extremities. The Journal of Strength & Conditioning Research, 20(4), 971-977.
    Nyland, J., Smith, S., Beickman, K., Armsey, T., & Caborn, D. N. (2002). Frontal plane knee angle affects dynamic postural control strategy during unilateral stance. Medicine and science in sports and exercise, 34(7), 1150-1157.
    O'Malley, E., Murphy, J. C., Persson, U. M., Gissane, C., & Blake, C. (2017). The effects of the gaelic athletic association 15 training program on neuromuscular outcomes in gaelic football and hurling players: a randomized cluster trial. The Journal of Strength & Conditioning Research, 31(8), 2119-2130.
    Olsen, O.-E., Myklebust, G., Engebretsen, L., & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. The American Journal of Sports Medicine, 32(4), 1002-1012. Retrieved from https://journals.sagepub.com/doi/10.1177/0363546503261724?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
    https://journals.sagepub.com/doi/pdf/10.1177/0363546503261724
    Onate, J., Cortes, N., Welch, C., & Van Lunen, B. (2010). Expert versus novice interrater reliability and criterion validity of the landing error scoring system. Journal of sport rehabilitation, 19(1), 41-56. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102003/pdf/nihms274774.pdf
    Ortiz, A., Capo-Lugo, C. E., & Venegas-Rios, H. L. (2014). Biomechanical deficiencies in women with semitendinosus-gracilis anterior cruciate ligament reconstruction during drop jumps. PM&R, 6(12), 1097-1106.
    Padua, D. A., Boling, M. C., DiStefano, L. J., Onate, J. A., Beutler, A. I., & Marshall, S. W. (2011). Reliability of the landing error scoring system-real time, a clinical assessment tool of jump-landing biomechanics. Journal of sport rehabilitation, 20(2), 145-156.
    Padua, D. A., DiStefano, L. J., Beutler, A. I., de la Motte, S. J., DiStefano, M. J., & Marshall, S. W. (2015). The Landing Error Scoring System as a Screening Tool for an Anterior Cruciate Ligament Injury-Prevention Program in Elite-Youth Soccer Athletes. J Athl Train, 50(6), 589-595. doi:10.4085/1062-6050-50.1.10
    Padua, D. A., Marshall, S. W., Boling, M. C., Thigpen, C. A., Garrett, W. E., Jr., & Beutler, A. I. (2009). The Landing Error Scoring System (LESS) Is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am J Sports Med, 37(10), 1996-2002. doi:10.1177/0363546509343200
    Pain, M. T. (2014). Considerations for single and double leg drop jumps: bilateral deficit, standardizing drop height, and equalizing training load. Journal of applied biomechanics, 30(6), 722-727. Retrieved from https://journals.humankinetics.com/view/journals/jab/30/6/article-p722.xml
    Pandy, M. G., & Shelburne, K. B. (1997). Dependence of cruciate-ligament loading on muscle forces and external load. Journal of Biomechanics, 30(10), 1015-1024.
    Pappas, E., & Carpes, F. P. (2012). Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks. Journal of science and medicine in sport, 15(1), 87-92. Retrieved from https://www.jsams.org/article/S1440-2440(11)00147-2/fulltext
    Pappas, E., Hagins, M., Sheikhzadeh, A., Nordin, M., & Rose, D. (2007). Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clinical journal of sport medicine, 17(4), 263-268.
    Pappas, E., Sheikhzadeh, A., Hagins, M., & Nordin, M. (2007). The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. Journal of sports science & medicine, 6(1), 77-84. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24149228
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778703/
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778703/pdf/jssm-06-77.pdf
    Paterno, M. V., Schmitt, L. C., Ford, K. R., Rauh, M. J., Myer, G. D., Huang, B., & Hewett, T. E. (2010). Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. The American Journal of Sports Medicine, 38(10), 1968-1978. doi:10.1177/0363546510376053
    Pfile, K. R., Gribble, P. A., Buskirk, G. E., Meserth, S. M., & Pietrosimone, B. G. (2016). Sustained improvements in dynamic balance and landing mechanics after a 6-week neuromuscular training program in college women’s basketball players. Journal of sport rehabilitation, 25(3), 233-240. Retrieved from https://journals.humankinetics.com/view/journals/jsr/25/3/article-p233.xml
    Pohl, M. B., Mullineaux, D. R., Milner, C. E., Hamill, J., & Davis, I. S. (2008). Biomechanical predictors of retrospective tibial stress fractures in runners. Journal of biomechanics, 41(6), 1160-1165.
    Powers, C. M. (2010). The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. Journal of Orthopaedic & Sports Physical Therapy, 40(2), 42-51.
    Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A., Vallery, H., & von Zitzewitz, J. (2021). Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors (Basel), 21(8). doi:10.3390/s21082727
    Pryor, J. L., Root, H. J., Vandermark, L. W., Pryor, R. R., Martinez, J. C., Trojian, T. H., . . . DiStefano, L. J. (2017). Coach-led preventive training program in youth soccer players improves movement technique. Journal of science and medicine in sport, 20(9), 861-866. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244017302657?via%3Dihub
    Risberg, M., Holm, I., & Ekeland, A. (1995). Reliability of functional knee tests in normal athletes. Scandinavian journal of medicine & science in sports, 5(1), 24-28.
    Romani, W. A., Gieck, J. H., Perrin, D. H., Saliba, E. N., & Kahler, D. M. (2002). Mechanisms and management of stress fractures in physically active persons. J Athl Train, 37(3), 306-314.
    Roos, K. G., Marshall, S. W., Kerr, Z. Y., Golightly, Y. M., Kucera, K. L., Myers, J. B., . . . Comstock, R. D. (2015). Epidemiology of overuse injuries in collegiate and high school athletics in the United States. The American Journal of Sports Medicine, 43(7), 1790-1797. Retrieved from https://journals.sagepub.com/doi/10.1177/0363546515580790?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
    Russell, K. A., Palmieri, R. M., Zinder, S. M., & Ingersoll, C. D. (2006). Sex differences in valgus knee angle during a single-leg drop jump. Journal of athletic training, 41(2), 166. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472649/pdf/i1062-6050-41-2-166.pdf
    Saito, A., Okada, K., Sasaki, M., & Wakasa, M. (2022). Influence of the trunk position on knee kinematics during the single-leg landing: implications for injury prevention. Sports Biomechanics, 21(7), 810-823.
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
    Schurr, S. A., Marshall, A. N., Resch, J. E., & Saliba, S. A. (2017). Two-dimensional video analysis is comparable to 3D motion capture in lower extremity movement assessment. International journal of sports physical therapy, 12(2), 163.
    Schwartz, O., Talmy, T., Olsen, C. H., & Dudkiewicz, I. (2020). The Landing Error Scoring System Real-Time test as a predictive tool for knee injuries: A historical cohort study. Clin Biomech (Bristol, Avon), 73, 115-121. doi:10.1016/j.clinbiomech.2020.01.010
    Sell, T. C., Ferris, C. M., Abt, J. P., Tsai, Y. S., Myers, J. B., Fu, F. H., & Lephart, S. M. (2007). Predictors of proximal tibia anterior shear force during a vertical stop‐jump. Journal of Orthopaedic Research, 25(12), 1589-1597.
    Sentsomedi, K. R., & Puckree, T. (2016). Epidemiology of injuries in female high school soccer players. African health sciences, 16(1), 298-305. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915435/pdf/AFHS1601-0298.pdf
    Shimokochi, Y., & Shultz, S. J. (2008). Mechanisms of noncontact anterior cruciate ligament injury. Journal of athletic training, 43(4), 396-408.
    Simon, S. R. (2004). Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech, 37(12), 1869-1880. doi:10.1016/j.jbiomech.2004.02.047
    Smith, H. C., Johnson, R. J., Shultz, S. J., Tourville, T., Holterman, L. A., Slauterbeck, J., . . . Beynnon, B. D. (2011). A Prospective Evaluation of the Landing Error Scoring System (LESS) as a Screening Tool for Anterior Cruciate Ligament Injury Risk. The American Journal of Sports Medicine, 40(3), 521-526. doi:10.1177/0363546511429776
    Smith HC, J. R., Shultz SJ, Tourville T, Holterman LA, Slauterbeck J, Vacek PM, Beynnon BD. (2012). A prospective evaluation of the Landing Error Scoring System (LESS) as a screening tool for anterior cruciate ligament injury risk. The American Journal of Sports Medicine, 40(3), 521-526.
    Song, S. H., & Koo, J. H. (2020). Bone Stress Injuries in Runners: a Review for Raising Interest in Stress Fractures in Korea. J Korean Med Sci, 35(8), e38. doi:10.3346/jkms.2020.35.e38
    Souza, R. B., & Powers, C. M. (2009). Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. Journal of Orthopaedic & Sports Physical Therapy, 39(1), 12-19.
    Stiffler, M. R., Pennuto, A. P., Smith, M. D., Olson, M. E., & Bell, D. R. (2015). Range of motion, postural alignment, and LESS score differences of those with and without excessive medial knee displacement. Clinical journal of sport medicine, 25(1), 61-66.
    Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J. P., . . . Campbell, A. (2022). Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models. Sensors, 22(2). doi:10.3390/s22020446
    Taunton, J. E., Ryan, M. B., Clement, D., McKenzie, D. C., Lloyd-Smith, D., & Zumbo, B. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.
    Taylor, J. B., Ford, K. R., Nguyen, A.-D., & Shultz, S. J. (2016). Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane. Orthopaedic Journal of Sports Medicine, 4(6), 2325967116655158. doi:10.1177/2325967116655158
    Teyhen DS, S. S., Umlauf JA, Akerman RJ, Canada JB, Butler RJ, Goffar SL, Walker MJ, Kiesel KB, Plisky PJ. (2012). Automation to improve efficiency of field expedient injury prediction screening. The Journal of Strength & Conditioning Research, 26, S61-S72.
    Trzaskoma, Z., Ilnicka, L., Wiszomirska, I., Wit, A., & Wychowański, M. (2015). Laterality versus jumping performance in men and women. Acta of Bioengineering and Biomechanics, 17(1), 103--110.
    Vairo, G. L., Myers, J. B., Sell, T. C., Fu, F. H., Harner, C. D., & Lephart, S. M. (2008). Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 16(1), 2-14. doi:10.1007/s00167-007-0427-4
    van Rijn, R. M., van Os, A. G., Bernsen, R. M., Luijsterburg, P. A., Koes, B. W., & Bierma-Zeinstra, S. M. (2008). What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med, 121(4), 324-331.e326. doi:10.1016/j.amjmed.2007.11.018
    Van Soest, A., Roebroeck, M., Bobbert, M., Huijing, P., & van Ingen Schenau, G. (1985). A comparison of one-legged and two-legged countermovement jumps. Medicine and science in sports and exercise, 17(6), 635-639.
    Verrelst, R., Van Tiggelen, D., De Ridder, R., & Witvrouw, E. (2018). Kinematic chain-related risk factors in the development of lower extremity injuries in women: A prospective study. Scand J Med Sci Sports, 28(2), 696-703. doi:10.1111/sms.12944
    Wang, L.-I. (2011). The lower extremity biomechanics of single-and double-leg stop-jump tasks. Journal of sports science & medicine, 10(1), 151.
    Warden, S. J., Davis, I. S., & Fredericson, M. (2014). Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther, 44(10), 749-765. doi:10.2519/jospt.2014.5334
    Wesley, C. A., Aronson, P. A., & Docherty, C. L. (2015). Lower Extremity Landing Biomechanics in Both Sexes After a Functional Exercise Protocol. J Athl Train, 50(9), 914-920. doi:10.4085/1062-6050-50.8.03
    Whittaker, J. L., Booysen, N., De La Motte, S., Dennett, L., Lewis, C. L., Wilson, D., . . . Emery, C. A. (2017). Predicting sport and occupational lower extremity injury risk through movement quality screening: a systematic review. British Journal of Sports Medicine, 51(7), 580-585.
    Willson, J. D., & Davis, I. S. (2008). Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther, 38(10), 606-615. doi:10.2519/jospt.2008.2706
    Willson, J. D., Dougherty, C. P., Ireland, M. L., & Davis, I. M. (2005). Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg, 13(5), 316-325. doi:10.5435/00124635-200509000-00005
    Yeow, C. H., Lee, P. V. S., & Goh, J. C. H. (2011). An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Human movement science, 30(3), 624-635.
    Zazulak, B. T., Hewett, T. E., Reeves, N. P., Goldberg, B., & Cholewicki, J. (2007). Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. The American journal of sports medicine, 35(7), 1123-1130.

    無法下載圖示 全文公開日期 2032/09/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE