簡易檢索 / 詳目顯示

研究生: 黃梓賓
Zih-Bin Huang
論文名稱: 沃斯田體合金的連續spinodal 相分離與序化反應研究
The study of sequential spinodal decompositions and ordering reactions in austenitic alloys
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
廖建發
Chien-Fa Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: 錳鋁合金鋼718超合金spinodal相分離序化反應
外文關鍵詞: Fe-Mn-Al alloy, 718 super alloy, spinodal decomposition, ordering reaction
相關次數: 點閱:192下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於錳鋁合金鋼在市場上具有其發展潛力,以及718超合金在高溫結構材料上的重要地位,因此本篇論文選擇此兩種合金材料進行研究。
而藉由對材料施以不同條件的熱處理,以及透過使用各項儀器進行金相組織觀察與晶體結構分析,針對材料的微觀結構變化進行一系列的探討與研究。
其中,錳鋁合金鋼在穿透式電子顯微鏡觀察中,發現基地中的顆粒內部還有著奈米尺度的黑白夾雜微細顆粒,並且也同樣在718超合金觀察到這一現象,相互應證了合金材料中確實存在此種微觀結構變化。
起初,研究人員認為材料是直接經由序化反應而產生有序相,而在本研究中透過穿透式電子顯微鏡,發現了材料在奈米尺度的微觀現象,經過探討後判斷為材料在相變化過程中,內部會發生連續的spinodal相分離。因此藉由本次研究所觀察到的現象,修正了以往研究人員所認為的材料相變化過程,以及根據此一結果將其繪製成相變化過程示意相圖。希望本次研究能讓未來相關人員對於合金鋼相變化有更進一步的瞭解,並為其提供更深入的研究方向。


Due to the development potential of manganese aluminum alloy steel and the significant role of 718 superalloys in high-temperature structural materials, this paper selects these two alloy materials for research. In this study, we conducted different heat treatments and utilized various instruments to observe and analyze microstructural phase transformations. Remarkably, our TEM observations revealed a previously unexplored phenomenon of nano-scale spinodal decomposition within the matrix in manganese-aluminum alloy steel and 718 superalloys. Initially, researchers believed that the material directly formed the ordered phase through ordering reactions. However, after further investigation through TEM observations at the nano-scale, we discovered that during the phase transformation process, the material undergoes continuous spinodal phase separation, followed by the enrichment of solute phases forming the ordered phase through ordering reactions. Based on the insights gained from this study, we have refined the phase transformation process and proposed an amended phase transformation reaction equation. We anticipate that these findings will significantly contribute to a deeper comprehension of phase transformations in alloy steels for future researchers. Moreover, we hope our results will provide them with more comprehensive research directions.

摘 要 i Abstract ii 誌 謝 iii 目  錄 v 圖 目 錄 vi 表 目 錄 xi 第一章 錳鋁合金鋼 1 1.1 前 言 1 1.2 文獻回顧 3 1.3 實驗方法 8 1.4 結果與討論 15 第二章 Inconel 718超合金 39 2.1 前 言 39 2.2 文獻回顧 41 2.3 實驗方法 44 2.4 結果與討論 52 第三章 結論 73 參考文獻 76

1 Frommeyer, G. & Brüx, U. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. steel research international 77, 627-633 (2006). https://doi.org:https://doi.org/10.1002/srin.200606440
2 Bai, S.-b. et al. Research status and development prospect of Fe–Mn–C–Al system low-density steels. Journal of Materials Research and Technology 25, 1537-1559 (2023). https://doi.org:https://doi.org/10.1016/j.jmrt.2023.06.037
3 Chen, S., Rana, R., Haldar, A. & Ray, R. K. Current state of Fe-Mn-Al-C low density steels. Progress in Materials Science 89, 345-391 (2017). https://doi.org:https://doi.org/10.1016/j.pmatsci.2017.05.002
4 Sauer, J. P., Rapp, R. A. & Hirth, J. P. Oxidation of iron-manganese-aluminum alloys at 850 and 1000°C. Oxidation of Metals 18, 285-294 (1982). https://doi.org:10.1007/BF00656572
5 Liu, S. Y., Lee, C. L., Kao, C. H. & Perng, T. P. High-Temperature Oxidation Behavior of Two-Phase Iron-Manganese-Aluminum Alloys. Corrosion 56, 339-349 (2000). https://doi.org:10.5006/1.3280537
6 Choi, J. K., Lee, S.-G., Park, Y.-H., Han, I.-W. & Morris, J. W., Jr. in The Twenty-second International Offshore and Polar Engineering Conference ISOPE-I-12-599 (2012).
7 Cheng, W.-C. Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy. Metallurgical and Materials Transactions A 36, 1737-1743 (2005). https://doi.org:10.1007/s11661-005-0038-y
8 Cheng, W.-C. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing. JOM 66, 1809-1820 (2014). https://doi.org:10.1007/s11837-014-1088-7
9 Cheng, W.-C., Liu, C.-F. & Lai, Y.-F. Observing the D03 phase in Fe–Mn–Al alloys. Materials Science and Engineering: A 337, 281-286 (2002). https://doi.org:https://doi.org/10.1016/S0921-5093(02)00047-3
10 Cheng, W.-C., Lin, H.-Y. & Liu, C.-F. Observing the massive transformation in an Fe–Mn–Al alloy. Materials Science and Engineering: A 335, 82-88 (2002). https://doi.org:https://doi.org/10.1016/S0921-5093(01)01947-5
11 Cheng, W.-C. & Lin, H.-Y. The precipitation of FCC phase from BCC matrix in an Fe–Mn–Al alloy. Materials Science and Engineering: A 323, 462-466 (2002). https://doi.org:https://doi.org/10.1016/S0921-5093(01)01498-8
12 Cheng, W.-C. & Lin, H.-Y. The formation of austenite annealing twins from the ferrite phase during aging in an Fe–Mn–Al alloy. Materials Science and Engineering: A 341, 106-111 (2003). https://doi.org:https://doi.org/10.1016/S0921-5093(02)00211-3
13 Cheng, W.-C., Lin, Y.-C. & Liu, C.-F. The fracture behaviors in an Fe–Mn–Al alloy during quenching processes. Materials Science and Engineering: A 343, 28-35 (2003). https://doi.org:https://doi.org/10.1016/S0921-5093(02)00369-6
14 Cheng, W.-C., Jaw, J.-H. & Wang, C.-J. Growing ledge structures of AlN crystals in a Fe–Mn–Al–C alloy. Scripta Materialia 51, 1141-1145 (2004). https://doi.org:https://doi.org/10.1016/j.scriptamat.2004.08.019
15 Cheng, W.-C., Cheng, C.-Y., Hsu, C.-W. & Laughlin, D. E. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Materials Science and Engineering: A 642, 128-135 (2015). https://doi.org:https://doi.org/10.1016/j.msea.2015.06.096
16 Cheng, W.-C. & Hwang, S.-M. A Eutectoid Reaction for the Decomposition of Austenite into Pearlitic Lamellae of Ferrite and M23C6 Carbide in a Mn-Al Steel. Metallurgical and Materials Transactions A 42, 1760-1766 (2011). https://doi.org:10.1007/s11661-010-0597-4
17 Cheng, W.-C., Lin, Y.-S. & Chen, K.-F. The formation of ferrite quenching twins in a body-centered cubic Fe–Mn–Al alloy during high-temperature quenching. Scripta Materialia 81, 36-39 (2014). https://doi.org:https://doi.org/10.1016/j.scriptamat.2014.02.021
18 Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase transformations in metals and alloys. (CRC press, 2021).
19 Sundararaman, M., Mukhopadhyay, P. & Banerjee, S. Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718. Metallurgical Transactions A 23, 2015-2028 (1992). https://doi.org:10.1007/BF02647549
20 Marteau, L., Pareige, C. & Blavette, D. Imaging the three orientation variants of the DO22 phase by 3D atom probe microscopy. Journal of microscopy 204, 247-251 (2002). https://doi.org:10.1046/j.1365-2818.2001.00952.x
21 https://sppic.ntust.edu.tw/p/406-1058-74152,r1589.php?Lang=zh-tw.
22 Osinkolu, G. A., Onofrio, G. & Marchionni, M. Fatigue crack growth in polycrystalline IN 718 superalloy. Materials Science and Engineering: A 356, 425-433 (2003). https://doi.org:https://doi.org/10.1016/S0921-5093(03)00156-4
23 Deng, W., Xu, J., Hu, Y., Huang, Z. & Jiang, L. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy. Materials Science and Engineering: A 742, 813-819 (2019). https://doi.org:https://doi.org/10.1016/j.msea.2018.11.052
24 Ma, X.-f., Duan, Z., Shi, H.-j., Murai, R. & Yanagisawa, E. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime. Journal of Zhejiang University-SCIENCE A 11, 727-737 (2010). https://doi.org:10.1631/jzus.A1000171
25 Sun, J. & Yuan, H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718. International Journal of Fatigue 120, 228-240 (2019). https://doi.org:https://doi.org/10.1016/j.ijfatigue.2018.11.018
26 Mercer, C., Soboyejo, A. B. O. & Soboyejo, W. O. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy. Materials Science and Engineering: A 270, 308-322 (1999). https://doi.org:https://doi.org/10.1016/S0921-5093(99)00214-2
27 Kirka, M. M., Greeley, D. A., Hawkins, C. & Dehoff, R. R. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting. International Journal of Fatigue 105, 235-243 (2017). https://doi.org:https://doi.org/10.1016/j.ijfatigue.2017.08.021
28 Ye, X., Hua, X., Wang, M. & Lou, S. Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding. Journal of Materials Processing Technology 222, 381-390 (2015). https://doi.org:https://doi.org/10.1016/j.jmatprotec.2015.03.031
29 Ola, O. T. & Doern, F. E. A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy. Materials & Design 57, 51-59 (2014). https://doi.org:https://doi.org/10.1016/j.matdes.2013.12.060
30 Radhakrishna, C. H. & Prasad Rao, K. The formation and control of Laves phase in superalloy 718 welds. Journal of Materials Science 32, 1977-1984 (1997). https://doi.org:10.1023/A:1018541915113
31 Thavamani, R., Balusamy, V., Nampoothiri, J., Subramanian, R. & Ravi, K. R. Mitigation of hot cracking in Inconel 718 superalloy by ultrasonic vibration during gas tungsten arc welding. Journal of Alloys and Compounds 740, 870-878 (2018). https://doi.org:https://doi.org/10.1016/j.jallcom.2017.12.295
32 Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T. & Sivakumar, D. An overview on welding of Inconel 718 alloy - Effect of welding processes on microstructural evolution and mechanical properties of joints. Materials Characterization 174, 110997 (2021). https://doi.org:https://doi.org/10.1016/j.matchar.2021.110997
33 Odabaşı, A., Ünlü, N., Göller, G. & Eruslu, M. N. A Study on Laser Beam Welding (LBW) Technique: Effect of Heat Input on the Microstructural Evolution of Superalloy Inconel 718. Metallurgical and Materials Transactions A 41, 2357-2365 (2010). https://doi.org:10.1007/s11661-010-0319-y
34 Al-hatab, K. A., Al-bukhaiti, M. A., Krupp, U. & Kantehm, M. Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures. Oxidation of Metals 75, 209-228 (2011). https://doi.org:10.1007/s11085-010-9230-6
35 Jia, Q. & Gu, D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Optics & Laser Technology 62, 161-171 (2014). https://doi.org:https://doi.org/10.1016/j.optlastec.2014.03.008
36 Andrieu, E., Molins, R., Ghonem, H. & Pineau, A. Intergranular crack tip oxidation mechanism in a nickel-based superalloy. Materials Science and Engineering: A 154, 21-28 (1992). https://doi.org:https://doi.org/10.1016/0921-5093(92)90358-8
37 Kamal, S., Jayaganthan, R. & Prakash, S. High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C. Bulletin of Materials Science 33, 299-306 (2010). https://doi.org:10.1007/s12034-010-0046-4
38 Juillet, C., Oudriss, A., Balmain, J., Feaugas, X. & Pedraza, F. Characterization and oxidation resistance of additive manufactured and forged IN718 Ni-based superalloys. Corrosion Science 142, 266-276 (2018). https://doi.org:https://doi.org/10.1016/j.corsci.2018.07.032
39 He, F. et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia 167, 275-286 (2019). https://doi.org:https://doi.org/10.1016/j.actamat.2019.01.048
40 Slama, C. & Abdellaoui, M. Structural characterization of the aged Inconel 718. Journal of Alloys and Compounds 306, 277-284 (2000). https://doi.org:https://doi.org/10.1016/S0925-8388(00)00789-1
41 Alam, T., Chaturvedi, M., Ringer, S. P. & Cairney, J. M. Precipitation and clustering in the early stages of ageing in Inconel 718. Materials Science and Engineering: A 527, 7770-7774 (2010). https://doi.org:https://doi.org/10.1016/j.msea.2010.08.053
42 Hong, S. J., Chen, W. P. & Wang, T. W. A diffraction study of the γ″ phase in INCONEL 718 superalloy. Metallurgical and Materials Transactions A 32, 1887-1901 (2001). https://doi.org:10.1007/s11661-001-0002-4
43 Cozar, R. & Pineau, A. Morphology of y’ and y” precipitates and thermal stability of inconel 718 type alloys. Metallurgical Transactions 4, 47-59 (1973). https://doi.org:10.1007/BF02649604
44 Slama, C., Servant, C. & Cizeron, G. Aging of the Inconel 718 alloy between 500 and 750 °C. Journal of Materials Research 12, 2298-2316 (1997). https://doi.org:10.1557/JMR.1997.0306
45 Dubiel, B. et al. TEM, HRTEM, electron holography and electron tomography studies of γ′ and γ″ nanoparticles in Inconel 718 superalloy. Journal of Microscopy 236, 149-157 (2009). https://doi.org:https://doi.org/10.1111/j.1365-2818.2009.03283.x
46 https://sppic.ntust.edu.tw/p/406-1058-101798,r1600.php?Lang=zh-tw.
47 https://sppic.ntust.edu.tw/p/406-1058-51523,r1589.php?Lang=zh-tw.

QR CODE