簡易檢索 / 詳目顯示

研究生: 邱俊瑋
Jiun-Wei Chiu
論文名稱: 含聚乙二醇雙性高分子之合成與鑑定以及經酵素固定化後之高分子在水溶液中之自組裝行為
Synthesis and Characterization of Poly(ethylene glycol)-Containing Amphiphilic Graft Copolymer Used as Enzyme Immobilization Carrier and its Self-Assembled Behavior in Aqueous Phase
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 李振綱
Cheng-Kang Lee
戴子安
Chi-An Dai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 147
中文關鍵詞: 雙性高分子聚乙二醇胰凝乳蛋白脢酵素固定化
外文關鍵詞: amphiphilic copolymer, mPEG, ChT, enzyme immobilization
相關次數: 點閱:285下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以酯交換反應合成含有聚乙二醇之雙性高分子(PNAS-mPEG),以作為酵素(α-chymotrypsin)固定化載體用。先以傅立葉紅外線光譜(FTIR)進行官能基團鑑定,由核磁共振光譜儀(1H-NMR)計算PEG之接枝效率,進而求出相對平均分子量,並以凝膠滲透層析儀(GPC)與SDS-聚丙烯醯胺膠體電泳(SDS-PAGE)觀察α-ChT是否成功接枝於載體上?
此polymer-protein conjugate系統具有在不同pH值水溶液中的自組裝行為,由螢光光譜、動態光散射光譜儀(DLS)與石英晶體微量天平(QCM)分析產物結構形態與親疏水性。在pH 4的緩衝溶液中,產物有較低的CAC ( 0.8314~2.072 g/l )、較低的2-AN λmax ( 416~422 nm)、較小的粒徑 ( P5-ChT(53.6 nm))與較高的振幅( P10-ChT(148.77 Hz))。在pH 7的緩衝溶液中,則呈現相反之性質。在活性分析上,隨PEG含量之增加其剩餘活性相對提高,且於pH 9下有明顯較高的活性存在。


Amphiphilic copolymers comprising poly(acrylic acid) (PAAc) as the backbone and monomethoxy poly(ethylene glycol) (mPEG) as the grafts were synthesized and characterized. The functional group, grafting efficiency and relative average molecular weight were determined by FTIR, 1H-NMR and GPC, respectively. This copolymer as a carrier is capable of immobilizing chymotrypsin (ChT) in alkaline aqueous phase. GPC and SDS-PAGE were used to whether ChT was success fully attached on to the amphiphilic polymer carrier.
Characteristic properties of polymer-protein conjugate system were analyzed by fluorescence spectroscopy, dynamic light scattering (DLS) and quartz crystal microbalance (QCM). The carrier system has lower CAC values (0.831~2.072 g/l), lower λmax (416~422 nm) of 2-AN spectrum, smaller particle sizes (only for P5-ChT (53.6 nm)) and higher frequency (only for P10-ChT (148.77 Hz)) in pH 4 buffer solutions. On the other hand, this carrier system show opposite results in pH 7.5 buffer solutions. In activity assay, residual activity increased with increasing the mPEG amounts and pH values. This carrier system has obviously high activity in pH 9 buffer solution.

第一章 緒論.................................................1 第二章 文獻回顧.............................................3 2-1 雙性高分子.............................................3 2-2 雙性高分子之合成.......................................4 2-3 高分子微胞在藥物控制釋放上之應用.......................5 2-4 高分子微胞系統之分析方法...............................6 2-5 聚丙烯酸之特性.........................................10 2-6 聚乙二醇之特性.........................................11 2-7 α-chymotrypsin之性質...................................12 2-8 高分子-蛋白質conjugate系統.............................15 第三章 實驗部分..........................................18 3-1 實驗原料...............................................18 3-2 實驗儀器及設備.........................................23 3-3 實驗流程...............................................25 3-4 合成步驟...............................................26 3-4-0 雙性高分子合成.......................................26 3-4-1 N-acryloxysuccinimide之合成..........................28 3-4-2 Poly N-acryloxysuccinimide之合成.....................29 3-4-3 mPEG-NH2之製備.......................................31 3-4-4 PNAS-mPEG之接枝反應..................................34 3-4-5 PNAS-mPEG之水解反應..................................35 3-4-6 PNAS-mPEG與α-chymotrypsin之接枝反應..................35 3-5 雙性高分子之鑑定........................................38 3-5-1 Poly(NAS)之鑑定…....................................38 3-5-2 接枝高分子之組成測定.................................38 3-5-3 接枝高分子之官能基測定...............................36 3-5-4 PAAc-mPEG-ChT之鑑定..................................39 3-5-5 螢光分析.............................................40 3-5-6 石英晶體微量天平(QCM)分析..........................42 3-5-7 微胞粒徑分析.........................................42 3-5-8 活性分析.............................................43 第四章 結果與討論...........................................44 4-1 FTIR光譜分析...........................................44 4-2 1H-NMR光譜分析.........................................53 4-3凝膠滲透層析(GPC) ....................................58 4-4 SDS-PAGE分析...........................................60 4-5 螢光分析...............................................61 4-6 DLS粒徑分析............................................73 4-7 石英晶體微量天平(QCM)分析............................77 4-8 活性分析...............................................81 第五章 結論與建議...........................................84 5-1 結論....................................................84 5-2 建議....................................................85 第六章 參考文獻.............................................86 附錄A 高分子性質之計算......................................91 附錄B FTIR、1H-NMR、螢光、DLS、活性原始圖...................101

1. R. M. Ottenbrite, "Polymeic Drugs and Drug Aministration", Chapter 10,
(1992).
2. 謝孟原, 台灣科技大學碩士論文(2000).
3. Ingrid J. Castellanos, Wasfi Al-Azzam, Kai Griebenow, J. Pharmaceutical
Sci., Vol. 94, No. 2, 327 (2005).
4. Francesco M. Veronese, Biomaterials, 22, 405-417 (2001).
5. Jing Li, W. John Kao, Biomacromolecules, 4, 1055-1067 (2003).
6. Betzaida Castillo, Jessica Mendez, Al-Azzam, Gabriel Barletta, Kai
Griebenow, Biotech. Bioeng., Vol. 94, No. 3, 565 (2006).
7. Y. Yu, C. Allen, S. Chijiwa, D. Maysinger, A. Eisenberg, Macromolecules,
submitted for publication.
8. G. S. Kwon, T. Okano, Advan. Drug Delivery Rev. 21, 107 (1996).
9. S. Creutz, J. van Stam, F.C. De Schryver, R. Jerome, Macromolecules 31, 681
(1998).
10. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai,
T. Okano, J. Controlled Release 50, 79 (1998).
11. T. Cao, P. Munk, C. Ramireddy, Z. Tuzar, S. E. Webber, Macromolecules, 24,
6300 (1991).
12. Carmen Scholz, Michihiro Iijima, Yukio Nagasaki, Kaztaoka, Macromolecules,
28, 7295 (1995).
13. Glen S. Kwon, Teruo Okano, Adv. Drug Delivery Reviews, 21, 107 (1996).
14. Marie Christine Jones, Maxime Ranger, Jean Christophe Leroux, Bioconjugate
Chem., 14, 774 (2003).
15. Y. H. Hsu, W. H. Chiang, C. H. Chen, C. S. Chern, H. C. Chiu,
Macromolecules, 38, 9757 (2005).

16. Bader H., Ringsdorf H. Schmidt B., Angew. Chem., 123/124, 457 (1984).
17. Pratten M. K., Lioyd J. B., Horpel G., Ringsdorf H., Makromol. Chem., 186,
725 (1985).
18. Masayuki Yokoyama, Shohei Inoue, Makromol. chem., 190, 2041-2054 (1989).
19. G. Gregoriadis, B. E. Ryman, Eur. J. Biochem., 24, 485 (1972).
20. J. H. Senior, CRC Crit. Rev. Ther. Drug Carrier Syst., 3 : 123 (1987).
21. D. Lin, A. Mori, and L. Huang, Biochimica et Biophysica Acta, 1104, 95
(1992).
22. 常慧芳, 碩士論文, 台灣工業技術學院 (1996).
23. G. Gregoriadis and B. E. Ryaman, Eur. J. Biochem., 24, 485 (1972).
24. Giuseppe Mantovani, Francois Lecolley, Lei Tao, David M. Haddleton, Joost
Clerx, Jeroen J. L. M. Cornelissen, Kelly Velonia, J. Am. Chem. Soc., 127,
2966 (2005).
25. Z. Tuzar, Iranian J. of Polymer Science and Technology, 4 (1) (1995).
26. B. Lindman, H. Wennerstrom, H. F. Eicke, Micelles, Springer–Verlag,
Heidelberg (1980).
27. K. N.Prasad, T. T. Luong, A. T. Florence, J. Pharis, C. Vaution, M.
Seiller, F. Puisieux, Journal of Colloid and Interface Science, 69 (2), 225
(1979).
28. Koichi I., Kazuo T., Hiroshige T., Genji I., Seiqou K., Shinichi I.,
Macromolecules, 24, 2348 (1991).
29. Kanehiro N., Ryuichi E., Mastami T., Journal of Polymer Scicnce : Polymer
Physics Edition, 14, 1287 (1976).
30. K. Kalyanasundaram and J. K. Thomas, J. Amer. Chem. Soc. 99 (7), 2039
(1977).
31. T. S. Chen, J.K. Thomas, J. Polymer Science:Polymer Chem. Ed., 17, 1103
(1979).
32. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka,
Langmuir, 9, 945 (1993).
33. Nakamura K., Endo R., Takeda M., J. Polym. Sci., Polym. Phys. Ed., 14, 135
(1976).
34. Nakamura K., Endo R., Takeda M., J. Polym. Sci., Polym. Phys. Ed., 14,
1287 (1976).
35. E. L. Wehry, Pleum Press. New York and London, (1976).
36. Amina Benahmed, Maxime Ranger, Jean Christophe Leroux, Pharmaceutical
Research, 18, 3, 323 (2001)
37. P. Lianos, J. Lang, J. Sturm, and R. Zana, J.Phys. Chem. 88, 17, 1103
(1979).
38. S.R. Tonge, B.J. Tighe, Advanced Drug Delivery Reviews, 53, 109 (2001).
39. J. Rička and T. Tanaka, Macromolecules, 17, 2916 (1984).
40. Orn Adalsteinsson, Andre Lamotte, Raymond F. Baddour, Clark K. Colton,
Alfred Pollak, George M. Whitesides, J. Molecular Catalysis, 6, 199 (1979).
41. J. F. J. Dippy, Chem. Rev., 25, 151 (1939)
42. S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies, and L. Illum,
Pharmacentical Research, 11 (7) (1994).
43. J. Milton Harris, Poly(eyhylene glycol) Chemistry : Biotechnical and
Biomedical Applications, Plenum Press, New York, 1992.
44. A. Abuchowski, J. R. McCoy, N. C. Palczuk, T. V. Es, and F. F. Davis, The
Journal of Biological Chemistry, Vol. 252, NO. 11, 3582 (1977).
45. Jing Li, W. John Kao, Biomacromolecules, 4, 1055 (2003).
46. Francesco M. Veronese, Biomaterials, 2, 405 (2001).
47. H. Yang, J. J. Morris, and S. T. Lopina, Journal of Colloid and Interface
Science, 273, 148 (2004).
48. A. A. Gabizon, Y. Barenholz, M. Bialer, Pharmaceutical Research, 10 (5)
(1993).
49. 張楚富, 生物化學原理, 九州圖書文物 (2004).
50. 基礎酵素學, 聯經出版 (1991)
51. 張文重, 蛋白質分解酵素(構造、功能、進化及應用), 環球書社.
52. Hess G. P., Chymotrypsin, chemical properties and catalysis, in the
enzymes, 3rd edn (Bover, P., ed.), Academic Press. New York, vol. Ⅲ., 213
(1971).
53. J. P. Chen, H. J. Yang, Allan S. Hoffman, Biomaterials, 11, 625 (1990).
54. J. P. Chen, M. S. Hsu, J. Molecular catalysis B : Enzymatic 2, 233 (1997).
55. J. P. Chen, J. Chem. Technol. Biotechnol., 73, 137 (1998).
56. Bhalchandra S. Lele, Hironobu Murata, Krzysztof Matyjaszewski, Alan J.
Russell, Biomacromolecules, 6, 3380 (2005).
57. Yoh Kodera, Taichi Sekine, Tohru Yasukohchi, Yoshihiro Kiriu, Misao
Hiroto, Ayako Matsushima, Yuji Inada, Bioconjugate Chemistry, 5, 4, 283
(1994).
58. Francois Lecolley, Lei Tao, Giuseppe Mantovani, Ian Durkin, Sylvie Lautru,
David M. Haddleton, Chem. Commun., 2026 (2004).
59. Zalipsky S., Gilon C., Zilkha A., J. Poly. Sci. Symp., 19, 1177 (1983).
60. Lewis C. Mokrasch, Analytical Biochemistry, 18, 64 (1967).
61. Miron T., Wilchek M., Analytical Biochemistry, 126, 433 (1982).
62. Zhicheng Hu, Ye Liu, Chunyan Hong, Caiyuan Pan, J. App. Poly. Sci., 98,
189 (2005).
63. 楊凱翔, 台灣科技大學碩士論文 (2006).
64. Silvia Arpicco, Franco Dosio, Andrea Bolognest, Chiara Lubelli, Paola
Brusa, Barbara Stella, Maurizio Ceruti, Luigi Cattel, Bioconjugate
Chemistry, 13, 757 (2002).
65. 曾彥智, 中興大學碩士論文 (2005).
66. Ali A. El-Rayyes, Than Htun, Spectrochimica Acta Parrt A, 60, 1985 (2004).
67. 施曉燕, 成功大學碩士論文 (2004).
68. T. Sato and R. Ruch, “Stabilizaiton of Colloidal Dispersions By Polymer
Adsorption”, Chapter 3, New York (1980).
69. Shweta Sharma, Parbhjot Kaur, Aklank Jain, Moganty R. Rajeswari, Munishwar
N Gupta, Biomacromolecules, 4, 330 (2003).
70. Marcia K. Walker, Daniel F. Farkas, Sonia R. Anderson, Lisbeth Meunier-
Goddik, J. Agric. Food Chem., 52, 8230 (2004).
71. A. Gerbanowski, C. Malabat, C. Rabiller, J. Gueguen, J. Agric. Food Chem.,
47, 5128 (1999).
72. Pedro Lozano, Teresa De Diego, Jose Luis Iborra, Eur. J. Biochem., 248, 80
(1997).
73. Vitaliy V. Khutoryanskiy, Artem V. Dubolazov, Zauresh S. Nurkeeva,
Grigoriy A. Mun, Langmuir, 20, 3785 (2004).
74. David J. Hemker, Veronica Garza, Curtis W. Frank, Macromolecules, 23, 4411
(1990).
75. Hideko Tamaru Oyama, Wing T. Tang, Curtis W. Frank, Macromolecules, 20,
474 (1987).
76. Hideko Tamaru Oyama, Wing T. Tang, Curtis W. Frank, Macromolecules, 20,
1839 (1987).
77. H. Arimura, Y. Ohya, T. Ouchi, Biomacromolecules, 6, 720 (2005).
78. 湯發奮, 中興大學碩士論文 (2006).
79. Zhilian Yue, Mark E. Eccleston, Nigel K. H. Slater, Polymer, 46, 2497
(2005).
80. Blow D. M., Steitz T. A., Annu. Rev. Biochem., 39, 86 (1970).

QR CODE