簡易檢索 / 詳目顯示

研究生: 修偉翔
Wei-Hsiang - Hsiu
論文名稱: 巨集型壓電陶瓷纖維複合材料的振動特性研究
Vibration Characteristics of Macro Fiber Composites
指導教授: 黃育熙
Yu-Hsi Huang
趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 巨集型壓電纖維複合材料共振頻率振動模態電子斑點干涉術阻抗分析儀雷射都卜勒振動儀有限元素法三維耦合振動
外文關鍵詞: Piezoelectricity, Macro Fiber Composites, MFC
相關次數: 點閱:289下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對三種巨集型壓電纖維複合材料(MFC)進行理論分析推導,配合 有限元素法(Finite Element Method, FEM)進行數值模擬分析,搭配多種實驗方 法實際量測 MFC 在之動態特性。本研究採用動態量測的實驗技術包含全域式的 電子斑點干涉術(Electronic Speckle Pattern Interferometry),可同時針對壓電材 料的面內與面外次微米振動的模態振形與共振頻率進行即時量測,記錄激振電壓 可評估三維振動效率;單點式面外量測的雷射都卜勒振動儀(Laser Doppler Vibrometer)能進行面外振動穩態掃頻位移量測;量測電性共振特性的阻抗分析 儀(Impedance Analyzer)可藉由量測壓電材料的電性阻抗獲得物體面內橫向伸 展模態之共振頻率。本研究探討 MFC 三種試片、MFC 基礎理論分析、以及混合 法(Mixing Rules)、等效體積元素(RVE)模型之理論推導,將演算後之壓電常 數代入有限元素分析軟體中模擬 MFC 受壓電訊號激振後的動態響應,詳細說明 FEM 數值分析對於逆壓電效應的模型建立與邊界條件的設定方式。本研究成果 呈現 MFC 之簡化理論模型,利於壓電常數演算及模擬分析;透過模擬與實驗歸 納三種 MFC 試片之動態特性,提出 MFC 應用在控制元件上之建議,並探討改 善模擬與實驗結果與加強驗證之可能性。


Three kinds of Macro Fiber Composites (MFC) are investigated through analytical, numerical, and experimental research in this study. The analytical thesis that been used to simplify the numerical model include “Mixing Rules,” “Uniform Field Method,” “Laminate Theory,” and “Representative Volume Element.” The analytical results of vibration characteristics are verified with FEM calculations. Several experimental techniques are used to measure the dynamic characteristics of piezoelectric materials. First, the full-filed optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), can measure simultaneously the resonant frequencies and mode shapes for out-of-plane and in-plane vibrations. Second, the pointwise measurement system, Laser Doppler Vibrometer (LDV), can obtain resonant frequencies by dynamic signal swept-sine analysis. We build the LDV system as the array measurement in mechatronics and reconstructed the mode shape in comparison with AF-ESPI measurements. Third, the correspondent in-plane resonant frequencies and anti-resonant frequencies are obtained by impedance analysis. The experimental results of vibration characteristics are verified with FEM calculations. Through the analytical, numerical, and experimental result, the vibration characteristics of MFC both in out-of-plane and in-plane are been discussed. Finally, the study would provide advices for auto-control in application for future reference.

第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 1-3 型壓電纖維複合材料 1.2.2 主動型壓電纖維複合材料 1.2.3 巨集型壓電纖維複合材料 1.3 內容簡介 第二章 壓電基本理論與實驗原理簡介 2.1 壓電基本理論 2.2 壓電材料常數轉換 2.3 電子散斑干涉數 2.3.1 面外振動量測 2.3.2 面內振動量測 2.4 雷射都卜勒振動儀 2.5 阻抗分析儀 第三章 巨集型壓電纖維複合材料之理論 3.1 試片介紹 3.1.1 P1型MFC 3.1.2 P2型MFC 3.1.3 F1型MFC 3.2 理論分析模型 3.2.1 d31效應之理論分析模型 3.2.2 d33效應之理論分析模型 3.3 混合法理論分析模型 3.3.1 d31效應之混合法理論分析模型 3.3.2 d33效應之混合法理論分析模型 3.4 理論模型分析小結 第四章 巨集型壓電纖維複合材料之有限元素分析 4.1 數值分析設定 4.2 P2型MFC模擬結果 4.3 P1型MFC模擬結果 4.4 F1型MFC模擬結果 4.5 模擬分析小結 第五章 巨集型壓電纖維複合材料之動態特性實驗量測 5.1 實驗方法介紹 5.2 P2型MFC實驗結果 5.3 P1型MFC實驗結果 5.4 F1型MFC實驗結果 5.5 實驗量測小結 第六章 結論與未來展望 6.1 結論 6.2 未來展望

[1] Schwartz MM: Encyclopedia of Smart Materials, John Wiley & Sons, 2002
[2] 曾國舜,馬劍清,「壓電纖維複材與壓電陶瓷雙晶片的動態特性及應用於能 量擷取系統之探討」,國立台灣大學機械工程學研究所碩士論文,2012 年。
[3] 朱建國,孫小松,李衛. 電子與光電子材料. 北京: 國防工業出版社. ISBN
978-7-118-05244-2.
[4] 中華民國經濟部產業科技發展協進會技術專區,「壓電纖維材料技術」,2012
http://www.getfresh.org.tw/tdp_detail.aspx?No=15
[5] 互動百科,「智慧材料」,http://www.baike.com/wiki/智能材料
[6] R. Brett Williams, Gyuhae Park, Daniel J. Inman and W. Keats Wilkie, “An Overview Of Composite Actuators With Piezoceramic Fibers, ” 20th
International Modal Analysis Conference, Los Angeles, 2002
[7] Smart Material Corp.
[8] Massachusetts Institute of Technology – MIT.
[9] Bent, A. A., Hagood, N. W., and Rodgers, J. P., “Anisotropic Actuation with
Piezoelectric Fiber Composites,” Journal of Intelligent Material Systems and
Structures, Vol. 6, May 1995.
[10] Bent, A. A., Hagood, N. W., and Rodgers, J. P., “Anisotropic Actuation with
Piezoelectric Fiber Composites,” Presented at the Fourth International Conference on Adaptive Structures, Nov. 2-4, 1993, Cologne, Federal Republic Of Germany.
[11] Bent, A. A. and Hagood, N. W., “Development of Piezoelectric Fiber Composites
for Structural Actuation,” AIAA Paper No. 93-1717-CP, 34th
AIAA/ASME/ASCE/AH SDM conference, La Jolla, CA, April 1993, pp3625-3638.
[12] Bent, A. A., “Piezoelectric Fiber Composites for Structural Actuation,” Master of
Science Thesis, Massachusetts Institute of Technology, January 1994.
[13] Bent, A. A., “Active Fiber Composites for Structural Actuation,” Doctor of
Philosophy Dissertation, Massachusetts Institute of Technology, January 1997.
[14] Janos, B. Z. and Hagood, N. W., “Overview of Active Fiber Composites Technologies,” Proceedings of the 6th International Conference on New Actuators
– ACTUATOR 98, June 98, Bremen, Germany.
[15] “High-Performance, Durable Actuators for Demanding Applications,” NASA
Technology Opportunity Announcement.
[16] Wilkie, W. K., Bryant, G. R., High, J. W. et al., “NASALangley Research Center
Macro-Figer Composite Actuator (LaRC-MFC): Technical Overview,”
[17] Flinn, E. D., “Helicopter blades with a new twist,” Aerospace America, vol. 37,
no. 9, Sept 1999 p. 40-43.
[18] Petit, C. W., “Up, up and away – Future flying machines will be faster and more
birdlike,” U.S. News & World Report, May 21, 2001, pp 46-47.
[19] 黃育熙,馬劍清,「壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實 驗量測、數值計算、與理論解析」,國立台灣大學機械工程研究所博士論文,
2009 年。
[20] 林憲陽,馬劍清,「壓電陶瓷複合層板動態特性之數值分析與實驗量測」,
國立台灣大學機械工程研究所博士論文,2002 年 6 月。
[21] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time- averaged electronic speckle pattern interferometry methods,” Applied Optics,
35(22), 1996, pp. 4502-4509.
[22] 黃吉宏,馬劍清,「應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題」,國立台灣大學機械工程研究所博士論文,1998 年 6 月。
[23] Wykes C., “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements,” Optical Engineering,
21, 1982, pp. 400-406.
[24] PhotonicsEncyclopedia, R., Acousto-optic Modulators.
http://www.rp-photonics.com/acousto_optic_modulators.html.
[25] Polytec, PDV-100 Vibrometer Education Kit.
[26] A. A. Bent and N. W. Hagood, “Piezoelectric fiber composites with interdigitated
electrodes,” Smart Structures and Intelligent System, SPIE 1917, 1993, pp. 341-
352.
[27] Henry A. Sodano, Daniel J. Inman and Gyuhae Park, “Comparison of
Piezoelectric Energy Harvesting Devices for Recharging Batteries,” Journal of
Intelligent Material Systems and Structures, 2005.
[28] M.J. Guan and W.H. Liao, “Characteristics of Energy Storage Devices in
PiezoelectricEnergy Harvesting Systems,” Journal of Intelligent Material
Systems and Structures, 2007.
[29] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-
shifting stroboscopic holographic interferometry,” Journal of Modern Optics,
33(10), 1986, pp. 1295-1309.
[30] A. Deraemaeker, H. Nasser, A. Benjeddou, and A. Preumont, “Mixing Rules for
the Piezoelectric Properties of Macro Fiber Composites,” Journal of Intelligent
Material Systems and Structures, Vol 20, Issue 12, 2009.
[31] Onur Bilgen, Kevin B Kochersberger, Daniel J Inman and Osgar J Ohanian III,
“Macro-Fiber Composite actuated simply supported thin airfoils,” IOP Publishing Ltd, 2010.
[32] S. Sreenivasa Prasath, A. Arockiarajan, “Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC),” Sensors and Actuators A: Physical, Volume 214, 1 August 2014, Pages 31–44.
[33] B.R. Williams, G. Park, D.J. Inman, and W.K. Wilkie. An overview of composite actuators with piezoceramic fibers. In Proc. of 20th Int. Modal Analysis Conference (IMAC), Los Angeles, USA, 2002.
[34] P. Wierach. Low profile piezo actuators based on multilayer technology. In Proc. of 17th Int. Conf. on Adaptive Structures and Technologies (ICAST2006), Taipei, Taiwan, October 2006.
[35] Vincent Piefort. Finite Element Modelling of Piezoelectric Active Structures. PhD thesis, Universit ́e Libre de Bruxelles, June 2001.
[36] U. Gabbert, H. K ̈oppe, F. Seeger, and H. Berger. Modeling of smart composite shell structures. J. of th. And appl Mechanics, 3(40):575–593, 2002.

QR CODE