簡易檢索 / 詳目顯示

研究生: 余國維
Guo-Wei Yu
論文名稱: 基於Dickson倍壓器之切換式電容多階層逆變器研製
Design and Implementation of a Dickson Voltage Multiplier-Based Switched-Capacitor Multilevel Inverter
指導教授: 黃仁宏
Jen-Hung Huang
口試委員: 陳景然
楊士進
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: Dickson倍壓器切換式電容多階層逆變器多載波正弦脈波寬度調變
外文關鍵詞: Dickson Voltage Multiplier, Switched-Capacitor, Multilevel Inverter, Multicarrier Sinusoidal Pulse Width Modulation
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文的目標是研製一個基於Dickson倍壓器之切換式電容多階層逆變器(Switched-Capacitor Multilevel Inverter, SCMLI)。首先使用Dickson倍壓器使各個電容電壓充電至所需的電壓準位,再經由開關及搭配多載波正弦脈波寬度調變技術產生多階層的電壓準位,最後藉由全橋換流器輸出階梯狀的弦波電壓。其中在Dickson倍壓器電路裡使用MOSFET開關取代二極體以達到同步切換,並且使用獨特的切換方式達到較小的電容漣波,因此能有效減少損耗。此外,整個電路裡無需使用磁性元件,如:電感或變壓器,因此能有效減少體積及降低損耗,達到高功率密度、高效率及低電磁干擾等優點,而且電路裡的電容電壓皆能保持平衡,所以無需額外使用電容電壓平衡電路。

在本論文裡對於多載波正弦脈波寬度調變的調變指數及電路開關的切換頻率進行分析與探討,並且設計在輸出電壓有效值為110 V_rms的情況下,電容電壓有較小的漣波及較佳的效率表現。最終,在硬體實作裡實現一個200 W的15階層切換式電容逆變器,其輸出電壓有效值為110 V_rms,輸出頻率為60 Hz,效率為96.97 %,以及輸出總諧波失真為7.13 %。

關鍵字:Dickson倍壓器、切換式電容、多階層逆變器、多載波正弦脈波寬度調變


The goal of this thesis is to design and implement a Dickson voltage multiplier-based switched-capacitor multilevel inverter. Firstly, the capacitor’s voltages are charged to the different voltage levels using the Dickson voltage multiplier, and the multilevel voltages are generated by the switches operated with the multicarrier sinusoidal pulse width modulation (SPWM). Finally, a staircase of sinusoidal waveform at the inverter’s output is produced by the full-bridge switches. In the Dickson voltage multiplier, the MOSFETs are used to replace the diodes so the synchronous switching operation can be realized. A unique switching scheme allows for achieving a small capacitor voltage ripple. Therefore, the power losses can be reduced. And, this inverter requires no magnetic component, such as inductors or transformers, which has the advantages of small size, high power density, high efficiency, and low electromagnetic interference (EMI). In addition, the capacitor’s voltages can be self-balanced, so it requires no external voltage balancing circuit.

In this thesis, the modulation index of Multicarrier SPWM and switching frequencies of switches are analyzed and discussed. The inverter is designed to obtain a small capacitor voltage ripple and a high efficiency as the output voltage operates at 110 V_rms. Finally, the hardware prototype of a 15-level SCMLI is designed and realized in the laboratory. The inverter provides an output voltage of 110 V_rms and an output frequency of 60 Hz to a standalone load of 200 W with an efficiency of 96.97 % and the output total harmonic distortion (THD) of 7.13 %.

Keywords: Dickson Voltage Multiplier, Switched-Capacitor, Multilevel Inverter, Multicarrier Sinusoidal Pulse Width Modulation

摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vii 表索引 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與文獻回顧 2 1.2.1 串並型(Series-Parallel) SCMLI 2 1.2.2 串接型(Cascaded) SCMLI 4 1.2.3 斐波那契 (Fibonacci) SCMLI 5 1.2.4 指數型(Exponential) SCMLI 6 1.2.5 Dickson SCMLI 7 1.3 章節概要 8 第二章 基於Dickson倍壓器之切換式電容多階層逆變器 9 2.1 電路架構 9 2.2 電路操作 10 2.2.1 工作原理 10 2.2.2 元件耐壓分析 19 第三章 多載波正弦脈波寬度調變分析及損耗分析 21 3.1 多載波正弦脈波寬度調變 21 3.2 調變指數與開關切頻選用 24 3.2.1 Modulation index = 1.1~1.2 and fsw = 6kHz 24 3.2.2 Modulation index =1.16 and fsw = 1.2k~6kHz 30 3.3 損耗分析 31 3.3.1 電容漣波損失 31 3.3.2 導通損失 32 3.3.3 切換損失 34 3.3.4 效率計算 36 第四章 電腦模擬驗證 39 4.1 電腦模擬電路圖 39 4.2 電容電壓及電流 40 4.3 開關元件耐壓 42 4.4 純電阻負載 45 4.4.1 輸入及輸出電壓及電流波形 45 4.5 電感性負載 47 4.5.1 電感值設計 47 4.5.2 輸入及輸出電壓及電流波形 48 4.6 功率損耗及效率 50 第五章 硬體電路設計與實作結果 52 5.1 電路設計 52 5.2 開關元件設計 53 5.3 電容設計 54 5.4 數位控制設計 55 5.5 驅動電路設計 58 5.6 電路實作與驗證 63 5.6.1 實際電路圖 63 5.6.2 電容電壓及電流 65 5.6.3 開關元件耐壓 68 5.6.4 純電阻負載之輸入及輸出電壓及電流波形 71 5.6.5 電感性負載之輸入及輸出電壓及電流波形 75 5.6.6 效率與THD 77 第六章 結論與未來展望 80 6.1 結論 80 6.2 未來展望 81 參考文獻 82

[1] J. Rodriguez, Jih-Sheng Lai and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug. 2002.
[2] B. Axelrod, Y. Berkovich, and A. Ioinovici, "A cascade boost-switched-capacitor-converter – two level inverter with an optimized multilevel
output waveform," IEEE Trans. Circuits Syst. I, vol. 52, no. 12, Dec. 2005.
[3] M. S. W. Chan and K. T. Chau, "A new switched-capacitor boost-multilevel inverter using partial charging," IEEE Trans. Circuits Syst. II, vol. 54, no. 12, Dec. 2007.
[4] S. R. Raman, K. W. E. Cheng and Y. Ye, "Multi-Input Switched-Capacitor Multilevel Inverter for High-Frequency AC Power Distribution," in IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5937-5948, July 2018.
[5] Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron., vol. 59, no. 2, Feb. 2012.
[6] Y. Ye, K. W. E. Cheng, J. Liu and K. Ding, "A step-up switched-capacitor multilevel inverter with self-voltage balancing," IEEE Trans. Ind. Electron., vol. 61, no. 12, Dec. 2014.
[7] A. Taghvaie, J. Adabi and M. Rezanejad, "A Self-Balanced Step-Up Multilevel Inverter Based on Switched-Capacitor Structure," in IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 199-209, Jan. 2018.
[8] Y. Nakagawa and H. Koizumi, "A Boost-Type Nine-Level Switched Capacitor Inverter," in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6522-6532, July 2019.

[9] J. Liu, K. W. E. Cheng and Y. Ye, "A Cascaded Multilevel Inverter Based on Switched-Capacitor for High-Frequency AC Power Distribution System," in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4219-4230, Aug. 2014.
[10] E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo and M. Sabahi, "A New Cascaded Switched-Capacitor Multilevel Inverter Based on Improved Series–Parallel Conversion With Less Number of Components," in IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3582-3594, June 2016.
[11] R. Barzegarkhoo, H. M. Kojabadi, E. Zamiry, N. Vosoughi and L. Chang, "Generalized Structure for a Single Phase Switched-Capacitor Multilevel Inverter Using a New Multiple DC Link Producer With Reduced Number of Switches," in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5604-5617, Aug. 2016.
[12] R. Shalchi Alishah, S. H. Hosseini, E. Babaei, M. Sabahi and G. B. Gharehpetian, "New High Step-Up Multilevel Converter Topology With Self-Voltage Balancing Ability and Its Optimization Analysis," in IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7060-7070, Sept. 2017.
[13] Eguchi, K., Y. Zhang, K. Abe, I. Oota, S. Terada and Hirofumi Sasaki, "A Fibonacci Switched-Capacitor DC-AC Inverter for Small Power Applications,"2014.
[14] Y. Ye, S. Chen, X. Zhang and Y. Yi, "Half-Bridge Modular Switched-Capacitor Multilevel Inverter With Hybrid Pulsewidth Modulation," in IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8237-8247, Aug. 2020.
[15] A. Taghvaie, J. Adabi and M. Rezanejad, “Circuit topology and operation of a step-up multilevel inverter with a single dc source,” IEEE Trans. Ind. Electron., vol. 63, no. 11, Nov. 2016.
[16] M. Saeedian, M. E. Adabi, S. M. Hosseini, J. Adabi, and E. Pouresmaeil, "A Novel Step-Up Single Source Multilevel Inverter: Topology, Operating Principle, and Modulation," IEEE Trans. Power Electron., vol. 34, no. 4, April 2019.
[17] M. F. Talooki, M. Rezanejad, R. Khosravi and E. Samadaei, "A Novel High Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage Balancing," in IEEE Transactions on Power Electronics, vol. 36, no. 4, April 2021.
[18] T. Roy, P. K. Sadhu and A. Dasgupta, "Cross-Switched Multilevel Inverter Using Novel Switched Capacitor Converters," in IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8521-8532, Nov. 2019.
[19] W. -X. Tu, P. J. Huang and A. Ioinovici, "Switched-Capacitor Multilevel Inverter of Dickson Type for Photovoltaic Applications," 2021 IEEE International Future Energy Electronics Conference (IFEEC), 2021, pp. 1-6.
[20] M. N. H. Khan et al., "A Common Grounded Type Dual-Mode Five-Level Transformerless Inverter for Photovoltaic Applications," in IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9742-9754, Oct. 2021.
[21] A. Alzahrani, P. Shamsi and M. Ferdowsi, "Analysis and design of bipolar Dickson DC-DC converter," 2017 IEEE Power and Energy Conference at Illinois (PECI), 2017, pp. 1-6.
[22] M. S. Makowski and D. Maksimovic, "Performance limits of switched-capacitor DC-DC converters," Proceedings of PESC '95 - Power Electronics Specialist Conference, 1995
[23] J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," in IEEE Journal of Solid-State Circuits, vol. 11, no. 3, June 1976
[24] Texas Instruments Inc., " TMS320F2837xD Dual-Core
Microcontrollers Technical Reference Manual, " Datasheet, December 2013–Revised September 2019.
[25] Sipex Corporation, " Properly Sizing MOSFETs for PWM Controllers, " APPLICATION NOTE ANP20, November 16, 2006.
[26] ROHM Co., Ltd, " Calculation of Power Loss (Synchronous), " APPLICATION NOTE, October, 2016.
[27] Skyworks Solutions, Inc., " Si827x Data Sheet, " Datasheet, November 23, 2021.
[28] Skyworks Solutions, Inc., " AN486: High-Side Bootstrap Design Using ISO-Drivers in Power Delivery Systems, " Datasheet, October 18, 2021.

無法下載圖示 全文公開日期 2032/11/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE