簡易檢索 / 詳目顯示

研究生: 郭衣紜
Yi-Yun Kuo
論文名稱: 鈣鈦礦發光二極體之研究
The Study of Perovskite Light Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 199
中文關鍵詞: 無機載子傳輸層發光二極體晶粒奈米化
外文關鍵詞: inorganic carrier transport layer, light-emitting diode, nanocrystal pinning
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先將電洞注入層替換成氧化鎳對進行其表面形貌、光學性質及發光二極體光電特性分析。由以上分析結果證實鈣鈦礦薄膜需要進一步的優化。因此在後續進行兩種不同的方法進行鈣鈦礦的優化製程,第一種是透過旋塗過程中滴入反溶劑拿到晶粒奈米化,並搭配聚甲基丙烯酸甲酯進行鈍化處理。另一種則是透過添加聚乙烯吡咯烷酮進入鈣鈦礦溶液達到原位生成奈米化晶粒。最終以聚乙烯吡咯烷酮添加5 毫克每毫升為最佳條件,對其表面覆蓋率、螢光效率、激子輻射再結合率都有提升。所製備的鈣鈦礦薄膜發光二極體之光電效能為:啟動電壓 2.90 V,最大輝度 2035 cd/m2、最大電流效率 21.72 cd/A以及外部量子效率 6.83 %。並經由 20組發光二極體的效能分析,在本研究中可獲得的鈣鈦礦薄膜發光二極體最高外部量子效率可達 8.60 %。接續將電子傳輸層替換成無機的氧化鋅,但受限於氧化鋅對鈣鈦礦結構的劣化。在應用製發光二極體時,啟動電壓沒有變動,輝度降至1102 cd/m2上,且在外部量子效率降低至0.14 %。


    In recent years, the mainstream materials of carrier transport layers for perovskite light-emitting diodes still occupied by various organic small molecules and conductive polymers in the field. However, inorganic carrier transport layers seem to be the better choice, as many research groups have proposed that they are more stable in harsh environments. In this study, the hole injection layer was replaced by nickel oxide and analyzed the surface morphology, optical properties and photoelectric properties of light-emitting diodes. From the above analysis results, it is confirmed that the perovskite film needs to further optimizate. Therefore, two different methods are used to optimize the perovskite. The first one is to drop the anti-solvent during the spin coating process to reach nanocrystal pinning effect, and passivate it with polymethyl methacrylate. The other is to produce nanocrystalized perovskite in situ by adding polyvinylpyrrolidone into the perovskite solution. Finally, adding 5 mg/ml of polyvinylpyrrolidone was the optimal condition, and its surface coverage, fluorescence efficiency, and exciton radiation recombination rate were improved. The performances of perovskite TF-LEDs were: turn-on voltage of 2.90 V, maximum luminance of 2035 cd/m2, maximum current efficiency (CE) of 21.72 cd/A and external quantum efficiency(EQE) of 6.83%. The highest external quantum efficiency in this study could achieve 8.60%, which was obtained by analyzing 20 sets of perovskite TF-LEDs. The electron transport layer was subsequently replaced with inorganic zinc oxide, but it was limited by the deterioration of the perovskite structure by zinc oxide deposition. The performances of perovskite TF-LEDs were: turn-on voltage of 2.90 V, maximum luminance of 1102 cd/m2, and EQE of 0.14%.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 XIV 表目錄 XXVIII 第一章、緒論 1 1-1前言 1 1-2研究動機與目的 2 第二章、理論基礎與回顧 3 2-1 半導體與奈米材料 3 2-1-1 半導體概念與能帶圖 3 2-1-2 量子井結構 6 2-2 鈣鈦礦材料 8 2-2-1 鈣鈦礦結構 8 2-2-2 鈣鈦礦材料發展 11 2-3 鈣鈦礦發光二極體 13 2-3-1 發光二極體與各層結構介紹 13 2-3-2 發光二極體的工作原理 16 2-3-3 載子傳輸層材料的選擇 17 2-3-4 發光二極體效能指標介紹 20 2-3-4-1 啟動電壓(turn-on voltage,VTO) 20 2-3-4-2 LED發光程度的單位 20 2-3-4-3 電流效率(current efficiency,CE) 24 2-3-4-4 外部量子效率(external quantum efficiency,EQE) 24 2-3-4-5 電子主導與電洞主導元件之分析與計算 27 2-4 鈣鈦礦發光二極體的優化近期研究及其優化製程 31 2-4-1 降低鈣鈦礦晶體尺寸 31 2-4-2 缺陷鈍化與介面工程 34 2-4-3 鈣鈦礦與高分子混合 39 2-4-4 傳輸層調整與替換 42 2-4-5 近期鈣鈦礦發光二極體整理 48 第三章、實驗設計 51 3-1 實驗流程圖 51 3-2 實驗藥品 52 3-3 實驗儀器與分析原理 57 3-3-1 超音波震盪器 (Ultrasonic cleaner) 57 3-3-2 攪拌式加熱板 (Hot plate) 57 3-3-3 管式高溫爐 (Tube furnace) 57 3-3-4 微量天平 (Electronic balance) 58 3-3-5 外光燈 (UV lamp) 58 3-3-6 旋轉塗佈機 (Spin coater) 58 3-3-7 手套箱 (Glove box) 59 3-3-8 金屬蒸發源系統 (Metal evaporation source system) 60 3-3-9 紫外光-可見光光譜儀(UV/visible spectrophotometer) 61 3-3-10 X光繞射分析儀(X-ray diffraction,XRD) 62 3-3-11 場發射穿透式電子顯微鏡 (Field-emission gun transmission electron microscope,FETEM) 64 3-3-12 時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 66 3-3-13 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 68 3-3-14 高解析度場發射型掃描式電子顯微鏡 (High Resolution Field-emission Scanning Electron Microscope,HRFE-SEM) 70 3-3-15 電致發光量測系統(Electroluminescence,EL) 71 3-4 實驗步驟 72 3-4-1 氧化鎳前趨溶液配置 72 3-4-2 氧化鋅奈米顆粒溶液置備 73 3-4-3 Pristine鈣鈦礦溶液配置 74 3-4-4 PVP鈣鈦礦溶液配置 74 3-4-5 發光二極體的製備 75 3-4-5-1.定義工作面積與清洗ITO導電玻璃 75 3-4-5-2.旋轉塗佈電洞注入層/電洞傳輸層 76 3-4-5-3.旋轉塗佈鈣鈦礦層 77 3-4-5-4. 熱蒸鍍電子傳輸層、電子注入層與陰極與封裝(與3-4-4-5節擇一) 77 3-4-5-5. 旋轉塗佈電子傳輸層、熱蒸鍍電子注入層與陰極與封裝(與3-4-4-4節擇一) 78 3-4-6 電洞主導元件的製備 79 3-4-5-1.定義工作面積與清洗ITO導電玻璃 79 3-4-5-2.旋轉塗佈電洞注入層/電洞傳輸層 80 3-4-5-3.旋轉塗佈鈣鈦礦層 81 3-4-5-4.熱蒸鍍電洞傳輸層與金電極與封裝 82 3-4-7 電子主導元件的製備 82 3-4-7-1.定義工作面積與清洗ITO導電玻璃 82 3-4-7-2.熱蒸鍍電子傳輸層 83 3-4-7-3.旋轉塗佈鈣鈦礦層 84 3-4-7-4. 熱蒸鍍電子傳輸層、電子注入層與陰極與封裝 84 第四章、結果與討論 86 4-1 探討以NiO作為電洞注入層對鈣鈦礦發光元件效能之影響 86 4-1-1 無機電洞注入層NiO基本性質分析 86 4-1-2 以NiO為電洞注入層製作鈣鈦礦綠光二極體效能分析 92 4-2 鈣鈦礦綠光二極體製程優化探討 104 4-2-1 探討以不同溶劑進行nanocrystal pinning處理對鈣鈦礦綠光二極體效能之影響 104 4-2-2 探討添加PMMA進行nanocrystal pinning處理對鈣鈦礦綠光二極體效能之影響 113 4-2-3 探討添加PVP對鈣鈦礦綠光二極體效能之影響 128 4-3 以ZnO電子傳輸層應用於鈣鈦礦綠光二極體的效能探討 142 4-3-1 ZnO電子傳輸層基本性質分析 142 4-3-2 以全無機載子傳輸層製作鈣鈦礦綠光二極體效能分析 145 第五章、結論 151 第六章、參考文獻 153

    1. P. K. Patel, Device Simulation of Highly Efficient Eco-Friendly CH3NH3SnI3 Perovskite Solar Cell, Scientific Reports 11 (1), 1-11 (2021).
    2. E. Akman, A. E. Shalan, F. Sadegh and S. Akin, Moisture‐Resistant FAPbI3 Perovskite Solar Cell with 22.25% Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation, ChemSusChem 14 (4), 1176-1183 (2021).
    3. M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis and K. Petridis, Inorganic and Hybrid Perovskite Based Laser Devices: a Review, Materials 12 (6), 859 (2019).
    4. Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing and G. Xing, Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr3 Perovskite Laser, Nano Letters 20 (9), 6636-6643 (2020).
    5. H. Sun, W. Tian, F. Cao, J. Xiong and L. Li, Ultrahigh‐Performance Self‐Powered Flexible Double‐Twisted Fibrous Broadband Perovskite Photodetector, Advanced Materials 30 (21), 1706986 (2018).
    6. S. F. Leung, K. T. Ho, P. K. Kung, V. K. Hsiao, H. N. Alshareef, Z. L. Wang and J. H. He, A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity, Advanced Materials 30 (8), 1704611 (2018).
    7. Z. Chu, Q. Ye, Y. Zhao, F. Ma, Z. Yin, X. Zhang and J. You, Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small-Molecule Passivation, Advanced Materials 33 (18), e2007169 (2021).
    8. B. W. Kim, J. H. Heo, J. K. Park, D. S. Lee, H. Park, S. Y. Kim, J. H. Kim and S. H. Im, Morphology Controlled Nanocrystalline CsPbBr3 Thin-Film for Metal Halide Perovskite Light Emitting Diodes, Journal of Industrial and Engineering Chemistry 97, 417-425 (2021).
    9. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X= Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology, ACS Nano 9 (4), 4533-4542 (2015).
    10. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X= Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Letters 15 (6), 3692-3696 (2015).
    11. V. M. Goldschmidt, Die Gesetze Der Krystallochemie, Naturwissenschaften 14 (21), 477-485 (1926).
    12. C. C. Stoumpos and M. G. Kanatzidis, The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors, Accounts of Chemical Research 48 (10), 2791-2802 (2015).
    13. S. F. Hoefler, G. Trimmel and T. Rath, Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: a Review, Monatshefte für Chemie-Chemical Monthly 148 (5), 795-826 (2017).
    14. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo, Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites, Acta Crystallographica Section B: Structural Science 64 (6), 702-707 (2008).
    15. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    16. X. Ding, H. Wang, C. Chen, H. Li, Y. Tian, Q. Li, C. Wu, L. Ding, X. Yang and M. Cheng, Passivation Functionalized PhenothiazinE-based Hole Transport Material for Highly Efficient Perovskite Solar Cell with Efficiency Exceeding 22%, Chemical Engineering Journal 410, 128328 (2021).
    17. M. Udayakumar, G. Anushree, J. Sathyaraj and A. Manjunathan, The Impact of Advanced Technological Developments on Solar PV Value Chain, Materials Today: Proceedings 45, 2053-2058 (2021).
    18. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos and D. Credgington, Bright Light-Emitting Diodes Based on Organometal Halide Perovskite, Nature Nanotechnology 9 (9), 687-692 (2014).
    19. Q. Zi-Han, C. Ze-Ma, Z. Xing-Wang and Y. Jing-Bi, Research Progress of Efficient Green Perovskite Light Emitting Diodes, Acta Physica Sinica 68 (15), 158504 (2019).
    20. B. Geffroy, P. Le Roy and C. Prat, Organic Light‐Emitting Diode (OLED) Technology: Materials, Devices and Display Technologies, Polymer International 55 (6), 572-582 (2006).
    21. S. Negi, P. Mittal and B. Kumar, Impact of Different Layers on Performance of OLED, Microsystem Technologies 24 (12), 4981-4989 (2018).
    22. S. Adjokatse, H.-H. Fang and M. A. Loi, Broadly Tunable Metal Halide Perovskites for Solid-State Light-Emission Applications, Materials Today 20 (8), 413-424 (2017).
    23. M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu and A. L. Rogach, Metal Halide Perovskite Light‐Emitting Devices: Promising Technology for Next‐Generation Displays, Advanced Functional Materials 29 (30), 1902008 (2019).
    24. T. H. Han, S. Tan, J. Xue, L. Meng, J. W. Lee and Y. Yang, Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices, Advanced Materials 31 (47), 1803515 (2019).
    25. S.-K. Kim, H. Yang and Y.-S. Kim, Control of Carrier Injection and Transport in Quantum Dot Light Emitting Diodes (QLEDs) via Modulating Schottky Injection Barrier and Carrier Mobility, Journal of Applied Physics 126 (18), 185702 (2019).
    26. Q. Wang, C. Peng, L. Du, H. Li, W. Zhang, J. Xie, H. Qi, Y. Li, L. Tian and Y. Huang, Enhanced Performance of Perovskite Solar Cells via Low‐Temperature‐Processed Mesoporous SnO2, Advanced Materials Interfaces 7 (4), 1901866 (2020).
    27. M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho and B. Murali, Inorganic Lead Halide Perovskite Single Crystals: Phase‐Selective Low‐Temperature Growth, Carrier Transport Properties, and Self‐Powered Photodetection, Advanced Optical Materials 5 (2), 1600704 (2017).
    28. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard and P. Kanjanaboos, Perovskite Energy Funnels for Efficient Light-Emitting Diodes, Nature Nanotechnology 11 (10), 872-877 (2016).
    29. L. N. Quan, Y. Zhao, F. P. García de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan and H. Tan, Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission, Nano Letters 17 (6), 3701-3709 (2017).
    30. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks and H. J. Snaith, High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors, The Journal of Physical Chemistry Letters 5 (8), 1421-1426 (2014).
    31. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    32. N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao and R. Yang, Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells, Nature Photonics 10 (11), 699-704 (2016).
    33. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes and B. P. Rand, Efficient Perovskite Light-Emitting Diodes Featuring Nanometre-sized Crystallites, Nature Photonics 11 (2), 108-115 (2017).
    34. J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian and H. He, Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X= Br, I) Nanoplates with Controlled Thicknesses, ACS Nano 11 (11), 11100-11107 (2017).
    35. W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova and Z. Hu, Rational Molecular Passivation for High-Performance Perovskite Light-Emitting Diodes, Nature Photonics 13 (6), 418-424 (2019).
    36. D. H. Sin, S. B. Jo, S. G. Lee, H. Ko, M. Kim, H. Lee and K. Cho, Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer, ACS Applied Materials & Interfaces 9 (21), 18103-18112 (2017).
    37. M. Payandeh, V. Ahmadi, F. Arabpour Roghabadi, P. Nazari, F. Ansari, P. Brenner, R. Bauerle, M. Jakoby, U. Lemmer and I. A. Howard, High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact, ACS Applied Materials & Interfaces 12 (10), 11428-11437 (2020).
    38. Z. Chu, Q. Ye, Y. Zhao, F. Ma, Z. Yin, X. Zhang and J. You, Perovskite Light‐Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small‐Molecule Passivation, Advanced Materials 33 (18), 2007169 (2021).
    39. Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang and Z. Hu, Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance, Advanced Functional Materials 26 (17), 2950-2958 (2016).
    40. W. Chen, Y. Zhou, G. Chen, Y. Wu, B. Tu, F. Z. Liu, L. Huang, A. M. C. Ng, A. B. Djurišić and Z. He, Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells, Advanced Energy Materials 9 (19), 1803872 (2019).
    41. H. Wang, H. Yuan, J. Yu, C. Zhang, K. Li, M. You, W. Li, J. Shao, J. Wei and X. Zhang, Boosting the Efficiency of NiOx-Based Perovskite Light-Emitting Diodes by Interface Engineering, ACS Applied Materials & Interfaces 12 (47), 53528-53536 (2020).
    42. K. Lin, J. Xing, L. N. Quan, F. De Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang and C. Yan, Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per Cent, Nature 562 (7726), 245-248 (2018).
    43. F. Meng, C. Zhang, D. Chen, W. Zhu, H.-L. Yip and S.-J. Su, Combined Optimization of Emission Layer Morphology and Hole-Transport Layer for Enhanced Performance of Perovskite Light-Emitting Diodes, Journal of Materials Chemistry C 5 (25), 6169-6175 (2017).
    44. J. H. Heo, D. H. Song and S. H. Im, Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process, Advanced Materials 26 (48), 8179-8183 (2014).
    45. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Grätzel, Self‐Assembled Perovskite Nanowire Clusters for High Luminance Red Light‐Emitting Diodes, Advanced Functional Materials 24 (21), 3250-3258 (2014).
    46. A. Issac, S. Jin and T. Lian, Intermittent Electron Transfer Activity from Single CdSe/ZnS Quantum Dots, Journal of the American Chemical Society 130 (34), 11280-11281 (2008).
    47. S. Jin and T. Lian, Electron Transfer Dynamics from Single CdSe/ZnS Quantum Dots to TiO2 Nanoparticles, Nano Letters 9 (6), 2448-2454 (2009).
    48. H. C. Leventis, F. O’Mahony, J. Akhtar, M. Afzaal, P. O’Brien and S. A. Haque, Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions, Journal of the American Chemical Society 132 (8), 2743-2750 (2010).
    49. Y. Sun, W. Wang, H. Zhang, Q. Su, J. Wei, P. Liu, S. Chen and S. Zhang, High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer, ACS Applied Materials & Interfaces 10 (22), 18902-18909 (2018).
    50. X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji, Y. Chuai, P. Wang, S. Wen, C. Zhang and W. W. Yu, Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices, The Journal of Physical Chemistry Letters 7 (22), 4602-4610 (2016).
    51. S. Rutledge and A. Helmy, Carrier Mobility Enhancement in poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) Having Undergone Rapid Thermal Annealing, Journal of Applied Physics 114 (13), 133708 (2013).
    52. K. Elkhouly, I. Goldberg, H. G. Boyen, A. Franquet, V. Spampinato, T. H. Ke, R. Gehlhaar, J. Genoe, J. Hofkens and P. Heremans, Operationally Stable Perovskite Light Emitting Diodes with High Radiance, Advanced Optical Materials 9 (15), 2100586 (2021).
    53. V. Prakasam, D. Tordera, H. J. Bolink and G. Gelinck, Degradation Mechanisms in Organic Lead Halide Perovskite Light‐Emitting Diodes, Advanced Optical Materials 7 (22), 1900902 (2019).
    54. P. Vashishtha and J. E. Halpert, Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes, Chemistry of Materials 29 (14), 5965-5973 (2017).
    55. L. Zhao, K. M. Lee, K. Roh, S. U. Z. Khan and B. P. Rand, Improved Outcoupling Efficiency and Stability of Perovskite Light‐Emitting Diodes Using Thin Emitting Layers, Advanced Materials 31 (2), 1805836 (2019).
    56. C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh and M. S. Islam, Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells, Nature Communications 6 (1), 1-8 (2015).
    57. M. H. Futscher, J. M. Lee, L. McGovern, L. A. Muscarella, T. Wang, M. I. Haider, A. Fakharuddin, L. Schmidt-Mende and B. Ehrler, Quantification of Ion Migration in CH3NH3PbI3 Perovskite Solar Cells by Transient Capacitance Measurements, Materials Horizons 6 (7), 1497-1503 (2019).
    58. W. Lee, H. Li, A. B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J. J. Urban and J. C. Grossman, Ultralow Thermal Conductivity in All-Inorganic Halide Perovskites, Proceedings of the National Academy of Sciences 114 (33), 8693-8697 (2017).
    59. N. B. Kotadiya, P. W. Blom and G.-J. A. Wetzelaer, Efficient and Stable Single-Layer Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence, Nature Photonics 13 (11), 765-769 (2019).
    60. L. Qian, Y. Zheng, J. Xue and P. H. Holloway, Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures, Nature Photonics 5 (9), 543-548 (2011).
    61. H. Chen, L. Fan, R. Zhang, W. Liu, Q. Zhang, R. Guo, S. Zhuang and L. Wang, Sodium Ion Modifying in Situ Fabricated CsPbBr3 Nanoparticles for Efficient Perovskite Light Emitting Diodes, Advanced Optical Materials 7 (21), 1900747 (2019).
    62. Y. Liu, T. Wu, Y. Liu, T. Song and B. Sun, Suppression of Non-radiative Recombination toward High Efficiency Perovskite Light-Emitting Diodes, APL Materials 7 (2), 021102 (2019).
    63. T. Wu, J. Li, Y. Zou, H. Xu, K. Wen, S. Wan, S. Bai, T. Song, J. A. McLeod, S. Duhm, F. Gao and B. Sun, High-Performance Perovskite Light-Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation, Angew Chem Int Ed Engl 59 (10), 4099-4105 (2020).
    64. D.-H. Kang, S.-G. Kim, Y. C. Kim, I. T. Han, H. J. Jang, J. Y. Lee and N.-G. Park, CsPbBr3/CH3NH3PbCl3 Double Layer Enhances Efficiency and Lifetime of Perovskite Light-Emitting Diodes, ACS Energy Letters 5 (7), 2191-2199 (2020).
    65. S. Kumar, J. Jagielski, N. Kallikounis, Y. H. Kim, C. Wolf, F. Jenny, T. Tian, C. J. Hofer, Y. C. Chiu, W. J. Stark, T. W. Lee and C. J. Shih, Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates, Nano Letters 17 (9), 5277-5284 (2017).
    66. L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong, X. Fu, Y. A. Chen, S. He, X. Yi, L. Zhu, C. H. Chang, H. Ade, K. Gundogdu and F. So, Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing, Advanced Materials 32 (16), e1906571 (2020).
    67. L. Meng, E. P. Yao, Z. Hong, H. Chen, P. Sun, Z. Yang, G. Li and Y. Yang, Pure Formamidinium‐Based Perovskite Light‐Emitting Diodes with High Efficiency and Low Driving Voltage, Advanced Materials 29 (4), 1603826 (2017).
    68. K. Qasim, B. Wang, Y. Zhang, P. Li, Y. Wang, S. Li, S. T. Lee, L. S. Liao, W. Lei and Q. Bao, Solution‐Processed Extremely Efficient Multicolor Perovskite Light‐Emitting Diodes Utilizing Doped Electron Transport Layer, Advanced Functional Materials 27 (21), 1606874 (2017).
    69. J. Shamsi, P. Rastogi, V. Caligiuri, A. L. Abdelhady, D. Spirito, L. Manna and R. Krahne, Bright-Emitting Perovskite Films by LargE-scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr3 Nanoplatelets, ACS Nano 11 (10), 10206-10213 (2017).
    70. L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. M. Yang, M. Wei and B. R. Sutherland, Ultra-bright and Highly Efficient Inorganic Based Perovskite Light-Emitting Diodes, Nature Communications 8 (1), 1-8 (2017).
    71. B. Jeong, H. Han, Y. J. Choi, S. H. Cho, E. H. Kim, S. W. Lee, J. S. Kim, C. Park, D. Kim and C. Park, All‐Inorganic CsPbI3 Perovskite Phase‐Stabilized by Poly (ethylene oxide) for Red‐Light‐Emitting Diodes, Advanced Functional Materials 28 (16), 1706401 (2018).
    72. J. Chang, S. Zhang, N. Wang, Y. Sun, Y. Wei, R. Li, C. Yi, J. Wang and W. Huang, Enhanced Performance of Red Perovskite Light-Emitting Diodes through the Dimensional Tailoring of Perovskite Multiple Quantum Wells, The Journal of Physical Chemistry Letters 9 (4), 881-886 (2018).
    73. W. Cai, Z. Chen, Z. Li, L. Yan, D. Zhang, L. Liu, Q. H. Xu, Y. Ma, F. Huang, H. L. Yip and Y. Cao, Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices, ACS Applied Materials & Interfaces 10 (49), 42564-42572 (2018).
    74. Y. Ke, N. Wang, D. Kong, Y. Cao, Y. He, L. Zhu, Y. Wang, C. Xue, Q. Peng, F. Gao, W. Huang and J. Wang, Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability, The Journal of Physical Chemistry Letters 10 (3), 380-385 (2019).
    75. J. Wang, C. Song, Z. He, C. Mai, G. Xie, L. Mu, Y. Cun, J. Li, J. Wang and J. Peng, All‐Solution‐Processed Pure Formamidinium‐Based Perovskite Light‐Emitting Diodes, Advanced Materials 30 (39), 1804137 (2018).
    76. C. Zhang, B. Wang, W. Zheng, S. Huang, L. Kong, Z. Li, G. He and L. Li, Hydrofluoroethers as Orthogonal Solvents for All-Solution Processed Perovskite Quantum-Dot Light-Emitting Diodes, Nano Energy 51, 358-365 (2018).
    77. K. Sim, T. Jun, J. Bang, H. Kamioka, J. Kim, H. Hiramatsu and H. Hosono, Performance Boosting Strategy for Perovskite Light-Emitting Diodes, Applied Physics Reviews 6 (3), 031402 (2019).
    78. C. Yi, C. Liu, K. Wen, X.-K. Liu, H. Zhang, Y. Yu, N. Fan, F. Ji, C. Kuang and B. Ma, Intermediate-Phase-Assisted Low-Temperature Formation of γ-CsPbI3 Films for High-Efficiency Deep-Red Light-Emitting Devices, Nature Communications 11 (1), 1-8 (2020).
    79. C. Bi, J. Hu, Z. Yao, Y. Lu, D. Binks, M. Sui and J. Tian, Self‐Assembled Perovskite Nanowire Clusters for High Luminance Red Light‐Emitting Diodes, Advanced Functional Materials 30 (48), 2005990 (2020).
    80. Y.-C. Ye, Y. Li, Y. Tian, X.-Y. Cai, Y. Shen, K.-C. Shen, X. Gao, F. Song, W. Wang and J.-X. Tang, Surface-Induced Phase Engineering and Defect Passivation of Perovskite Nanograins for Efficient Red Light-Emitting Diodes, Nanoscale 13 (1), 340-348 (2021).
    81. Y. Miao, X. Liu, Y. Chen, T. Zhang, T. Wang and Y. Zhao, Deep‐Red Perovskite Light‐Emitting Diodes Based on One‐Step‐Formed γ‐CsPbI3 Cuboid Crystallites, Advanced Materials 33 (51), 2105699 (2021).
    82. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen and B. Han, All-Inorganic Quantum-Dot Light-Emitting Diodes Based on Perovskite Emitters with Low Turn-On Voltage and High Humidity Stability, Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
    83. F. Yuan, J. Xi, H. Dong, K. Xi, W. Zhang, C. Ran, B. Jiao, X. Hou, A. K. Y. Jen and Z. Wu, All‐Inorganic Hetero‐Structured Cesium Tin Halide Perovskite Light‐Emitting Diodes with Current Density Over 900 A cm−2 and Its Amplified Spontaneous Emission Behaviors, Physica Status Solidi–Rapid Research Letters(RRL) 12 (5), 1800090 (2018).
    84. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian and Y. Zhang, Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes, ACS Nano 12 (2), 1462-1472 (2018).
    85. Z. Shi, Y. Li, S. Li, X. Li, D. Wu, T. Xu, Y. Tian, Y. Chen, Y. Zhang and B. Zhang, Localized Surface Plasmon Enhanced All‐Inorganic Perovskite Quantum Dot Light‐Emitting Diodes Based on Coaxial Core/Shell Heterojunction Architecture, Advanced Functional Materials 28 (20), 1707031 (2018).
    86. Y. Sun, X. Yang, W. Jiao, J. Wu and Z. Zhao, All-Inorganic Perovskite Quantum Dots Based on InX3-Trioctylphosphine Oxide Hybrid Passivation Strategies for High-Performance and Full-Colored Light-Emitting Diodes, ACS Applied Electronic Materials 3 (1), 415-421 (2020).
    87. B. Sasi and K. Gopchandran, Nanostructured Mesoporous Nickel Oxide Thin Films, Nanotechnology 18 (11), 115613 (2007).
    88. S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing and H.-J. Freund, The Influence of Defects on the Ni 2p and O 1s XPS of NiO, Journal of Physics: Condensed Matter 4 (40), 7973 (1992).
    89. K. Kim and N. Winograd, X-ray Photoelectron Spectroscopic Studies of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-Bombardment, Surface Science 43 (2), 625-643 (1974).
    90. E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn and N. R. Armstrong, Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics, Chemistry of Materials 23 (22), 4988-5000 (2011).
    91. M. Langell and M. Nassir, Stabilization of NiO(111) Thin Films by Surface Hydroxyls, The Journal of Physical Chemistry 99 (12), 4162-4169 (1995).
    92. S.-Y. Han, D.-H. Lee, Y.-J. Chang, S.-O. Ryu, T.-J. Lee and C.-H. Chang, The Growth Mechanism of Nickel Oxide Thin Films by Room-Temperature Chemical Bath Deposition, Journal of the Electrochemical Society 153 (6), C382 (2006).
    93. M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed and O. M. Bakr, Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids, ACS Energy Letters 1 (4), 840-845 (2016).
    94. M. Ban, Y. Zou, J. P. Rivett, Y. Yang, T. H. Thomas, Y. Tan, T. Song, X. Gao, D. Credgington and F. Deschler, Solution-Processed Perovskite Light Emitting Diodes with Efficiency Exceeding 15% through Additive-controlled Nanostructure Tailoring, Nature Communications 9 (1), 1-10 (2018).
    95. X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin and J. You, Efficient Green Light-Emitting Diodes Based on Quasi-Two-Dimensional Composition and Phase Engineered Perovskite with Surface Passivation, Nature Communications 9 (1), 1-8 (2018).
    96. S. Y. Lee, Y. S. Nam, J. C. Yu, S. Lee, E. D. Jung, S.-H. Kim, S. Lee, J.-Y. Kim and M. H. Song, Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT: PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode, ACS Applied Materials & Interfaces 11 (42), 39274-39282 (2019).
    97. Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat and Z. a. Tan, Efficient and Stable Pure Green All-Inorganic Perovskite CsPbBr3 Light-Emitting Diodes with a Solution-Processed NiOx Interlayer, The Journal of Physical Chemistry C 121 (50), 28132-28138 (2017).
    98. M. K. Gangishetty, S. Hou, Q. Quan and D. N. Congreve, Reducing Architecture Limitations for Efficient Blue Perovskite Light‐Emitting Diodes, Advanced Materials 30 (20), 1706226 (2018).
    99. M.-Y. Huang, L. Veeramuthu, C.-C. Kuo, Y.-C. Liao, D.-H. Jiang, F.-C. Liang, Z.-L. Yan, R. Borsali and C.-C. Chueh, Improving Performance of Cs-Based Perovskite Light-Emitting Diodes by Dual Additives Consisting of Polar Polymer and n-type Small Molecule, Organic Electronics 67, 294-301 (2019).
    100. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung and S. Yoo, Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes, Science 350 (6265), 1222-1225 (2015).
    101. M. Terashima, T. Miyayama, T. Shirao, H. W. Mo, Y. Hatae, H. Fujimoto and K. Watanabe, The Electronic Band Structure Analysis of OLED Device by Means of in situ LEIPS and UPS Combined with GCIB, Surface and Interface Analysis 52 (12), 948-952 (2020).
    102. X. Huang, R. Bäuerle, F. Scherz, J.-N. Tisserant, W. Kowalsky, R. Lovrinčić and G. Hernandez-Sosa, Improved Performance of Perovskite Light-Emitting Diodes with a NaCl Doped PEDOT: PSS Hole Transport Layer, Journal of Materials Chemistry C 9 (12), 4344-4350 (2021).
    103. H. Masui, S. Nakamura, S. P. DenBaars and U. K. Mishra, Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges, IEEE Transactions on Electron Devices 57 (1), 88-100 (2009).
    104. P. Louette, F. Bodino and J.-J. Pireaux, Poly (methyl methacrylate)(PMMA) XPS Reference Core Level and Energy Loss Spectra, Surface Science Spectra 12 (1), 69-73 (2005).
    105. Y. Liu, F. Li, L. Qiu, K. Yang, Q. Li, X. Zheng, H. Hu, T. Guo, C. Wu and T. W. Kim, Fluorescent Microarrays of in situ Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing, ACS Nano 13 (2), 2042-2049 (2019).
    106. R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet and Y. Al-Douri, XPS and Optical Studies of Different Morphologies of ZnO Nanostructures Prepared by Microwave Methods, Ceramics International 39 (3), 2283-2292 (2013).

    無法下載圖示 全文公開日期 2024/08/09 (校內網路)
    全文公開日期 2024/08/09 (校外網路)
    全文公開日期 2024/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE