簡易檢索 / 詳目顯示

研究生: 潘長為
Chang-wei Pan
論文名稱: 微型雙層快速混流器之開發
Development of a microfluidic micromixer with top and bottom micro geometries
指導教授: 陳品銓
Pin-chuan Chen
口試委員: 陳炤彰
Chao-chang Chen
林怡均
Yi-jiun Lin
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 233
中文關鍵詞: 微混合器被動式混合器雙層結構高速铣削
外文關鍵詞: Micromixer, Passive mixer, double-layer structure, Micromilling
相關次數: 點閱:245下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於分子化學與生醫實驗中,快速與均勻的檢體混合是非常重要的。本研究設計一種快速混合的被動式微型混流器,在主流道上、下設計微溝槽結構,造成主流道中產生側向迴旋流之現象,以提升混合效果。研究初期使用數值模擬軟體COMSOL 4.3b分析不同溝槽角度、寬度、深度、排列方式及主流道深寬比對於流體壓力場、濃度場及混合效率之間差異性關係,由模擬結果中找出最佳化幾何設計之模型。此微型混流器製程利用微铣削加工機在聚甲基丙烯酸甲酯(PMMA)基材上製造母模,再以聚二甲基矽氧烷(PDMS)為材料翻製出晶片結構主體,最後透過常溫常壓射頻電漿進行PDMS之表面改質,並將兩片PDMS互相黏合,以完成微型混流器之製作。在實驗驗證方面,分別使用食用色素、酚酞化學反應及螢光在立體顯微鏡及雷射共軛焦顯微鏡,來探討混流器之定性定量評估。由2D實驗結果顯示(1)在立體顯微鏡下觀察,在15 mm混合長度中,被動式混流器的混合效率可達90%。(2)當入口流速較慢時,兩檢體之間擁有較長的擴散時間,因此有較佳的混合效率。(3)混流晶片在流道上方溝槽與下方溝槽之間有錯位(misalignment)的情況,導致有較差的混合效率。(4)在較高流速下,上、下溝槽之間的錯位(misalignment),會進一步的降低混合效率,呈現較差之情況。3D共軛焦掃描螢光實驗的結果與數值模擬及其他實驗的結果差距甚大,可能是因為共軛焦顯微鏡拍攝之動作屬於動態的混合現象。


A micromixer is extremely important to any integrated microfluidic system, and it is very challenging to achieve rapidly uniform mixing performance in the regime of laminar flow with a low Reynolds number. A chaotic advection type micromixer was developed with the double-layer strips on the microchannel wall, which generated two-layer vortices, enlarged contact interface and increased diffusion flux between the mixing reagents, and led to a better mixing performance. Since the physical design of the strip structure is critical to the performance of a micromixer, a numerical simulation software was used to optimize the dimension of the trip and microchannel. Once the design was finalized, a micromilling machine and PDMS casting technique were used to fabricate microfluidic devices for experiments. Multiple experiments were conducted with different equipments and different reagents, and results. 2D show that: (1) this passive micromixer can achieve around 90% M.P. with a channel length of 15 mm from the inlet at three flowing velocities, (2) slower flowing velocity of mixing reagents had higher M.P. due to the longer diffusion time between the mixing reagents, (3) the misalignment between the top and bottom micro strips caused a lower M.P., (4) the damage of misalignment between the two-layer strips to the M.P. is deteriorated at a higher flowing velocity. The 3D experiment results with a confocal microscope is different from the results of simulations and other experiments, which might be due to the in suitability of the confocal microscope for the dynamic mixing phenomena.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XII 表目錄 XXIII 符號表 XXV 第1章 緒論 1 1.1研究背景 1 1.2文獻回顧 3 1.2.1主動式微混合器 5 1.2.2被動式微混合器 8 1.3研究動機 17 1.4研究方法 20 第2章 混合器數值模擬與設計 25 2.1基本假設 25 2.2統御方程式 26 2.3數值方法 26 2.3.1 COMSOL Multiphysics 4.3b模型建立 26 2.3.2 COMSOL Multiphysics 4.3b模型設定 27 2.3.3 COMSOL Multiphysics 4.3b模型後處理 32 2.4混合品質 33 2.5混合器尺寸設計 34 第3章 數值模擬結果 45 3.1網格獨立測試 45 3.2單層微溝槽結構設計 48 3.2.1 微溝槽角度 48 3.2.2 微溝槽深度 52 3.2.3 溝槽排列 59 3.2.4 入口流速 62 3.3雙層微溝槽結構設計 66 3.3.1雙層微溝槽角度 66 3.3.2雙層入口流速 70 3.4雙層微溝槽兩種角度結構設計 71 3.4.1角度排列方式不同 72 3.5雙層微溝槽兩種角度(45度、60度)上、下交錯結構設計 78 3.5.1溝槽寬度不同 78 3.5.2主流道深寬比(h/w)不同 81 3.6雙層微溝槽兩種角度(45度、60度) 上、下交錯,流道深寬比1.0設計 85 3.6.1 溝槽寬度 85 3.7雙層微溝槽兩種角度(45度、60度),入口處孔洞設計 88 3.8雙層錐度(Taper)外型流道設計 90 3.8.1 不同錐度(Taper) 90 3.9雙層弧線外型流道設計 93 3.10模擬總結 100 第4章 混合器製程 103 4.1 微铣削 103 4.1.1前言 103 4.1.2操作方式 104 4.2混合器製作 108 4.2.1以壓克力為基材之母模 108 4.2.2聚二甲基矽氧烷高分子混合晶片 122 4.2.3常壓射頻電漿黏合 126 4.2.4上、下晶片對準設計 129 第5章 研究設備與實驗方法 133 5.1實驗設備 133 5.1.1製程設備與軟體 133 5.1.2量測設備與軟體 140 5.1.3 實驗設備與軟體 144 5.2實驗方法 147 5.2.1食用色素實驗方法 148 5.2.2 化學反應實驗方法 150 5.2.3雷射共軛焦掃描螢光實驗方法 151 5.3影像定量方法 156 5.3.1食用色素影像定量法 156 5.3.2共軛焦掃描螢光影像定量法 157 第6章 實驗結果與討論 161 6.1食用色素實驗結果(Food dye) 161 6.2化學反應實驗(Chemical reactions) 169 6.3雷射共軛焦掃描螢光實驗結果(Confocal) 172 6.3.1螢光顏料工作流體 172 6.3.2 BSA生醫分子工作流體 178 6.4實驗結果綜合討論 185 6.4.1食用色素實驗結果與數值模擬結果比較 185 6.4.2掃描螢光實驗(Confocal)結果與數值模擬結果比較 186 6.4.3食用色素實驗與掃描螢光實驗(Confocal)結果比較 191 第7章 結論與未來展望 193 7.1結論 193 7.2未來展望 195 參考文獻 197 附錄A 單層不同角度設計之流線分佈、速度向量與濃度分佈圖 209 附錄B 雙層不同角度設計之流線分佈、速度向量與濃度分佈圖 213 附錄C 雙層兩種角度(45、60)度不同排列設計之流線分佈、速度向量與濃度分佈圖 217 附錄D 雙層45、60角度上、下交錯排列設計深寬比1.0之流線分佈、速度向量與濃度分佈圖 221 附錄E 雙層45、60角度上、下交錯排列設計深寬比0.5之流線分佈、速度向量與濃度分佈圖 225 附錄F 雙層錐度外型流道設計之流線分佈、速度向量與濃度分佈圖 227 附錄G 雙層弧線外型流道設計之流線分佈、速度向量與濃度分佈圖 229 附錄H 接觸角量測實驗數據 231

[1] S.C. Terry, J.H. Jerman, J.B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices, vol. 26, pp. 1880-1886, 1979.
[2] E.F. Nuwaysir, M. Bittner, J. Trent, J.C. Barrett, C.A. Afshari, “Microarrays and Toxicology: The Advent of Toxicogenomics,” Molecular Carcingensis, vol. 24,pp. 153-159, 1999.
[3] P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array, ”Lab chip, vol. 5,pp. 44-48, 2005.
[4] M. Kurella, L.L. Hsiao, T. Yoshida, J.D Randall, G. Chow, S.S. Sarang, R.V Jensen, S.R Gullans, “DNA Microarray Analysis of Complex Biologic Processes, ”J Am Soc Nephrol , vol. 12, pp.1072-1078, 2001.
[5] S.Yamamura, H. Kishi, Y. Tokimitsu, S. Kondo, R. Honda, S.R. Rao, M. Omori, E. Tamiya, A. Muraguchi,“Single-Cell Microarray for Analyzing Cellular Response, ”Anal. Chem., vol.77, pp.8050-8056, 2005.
[6] R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, “Self-Contained, Fully Integrated Biochip for sample Preparation, Polymerase chain Reaction Amplification, and DNA Microarray Detection,” Anal. Chem., vol. 76, pp.1824-1831, 2004.
[7] E.A. Oblath, W.H. Henley, J.P. Alarie, J.M. Ramsey, “A microfluidic chip integrating DNA extraction and realtime PCR for the detection of bacteria in saliva, ” Lab chip, vol.13, pp.1325-1332, 2013.
[8] H. Arata, H. Komatsu, A. Han, K. Hosokawa, M. Maeda, “Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization,” Analyst, vol.137, pp.3234-3237, 2012.
[9] A. Crespi,Y. Gu, B. Ngamsom, et al., “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab chip, vol.10, pp.1167-1173, 2010.
[10] J. Melin, N. Roxhed, G. Gimenez, P. Griss, W.V.D Wijngaart, G. Stemme, “A liquid-triggered liquid microvalve for on- chip flow control,” Sensors and Actuators B, vol.100, pp.463-468, 2004.
[11] R. Pal, M. Yang, B. N. Johnson, D. T. Burke, M. A. Burns, “Phase Change Microvalve for Integrated Devices,” Anal. Chem., vol.76, pp.3740-3748, 2004.
[12] C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, A. Puntambekar, J. Y. Lee, “Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics, ” PROCEEDINGS OF THE IEEE, vol.92, No.1, 2004.
[13] N.T. Nguyen, Z. Wu, “Micromixers-a review,” J. Micromech. Microeng, vol.15, R1-R16, 2005.
[14] I. Glasgow, N. Aubry, “Enhancement of microfluidic mixing using time pulsing, ” Lab Chip, vol.3, pp.114-120, 2003.
[15] J. Deval, P. Tabeling, C.M. Ho, “A Dielectrophoretic Chaotic Mixer, ” Micro Electro Mechanical Systems, The Fifteenth IEEE International Conference on IEEE, pp.36-39, 2002.
[16] H.H. Bau ,J. Zhong, M. Yi, “A minute magneto hydro dynamic (MHD) mixer, ” Sensors and Actuators B, vol.79, pp.207-215, 2001.
[17] R.H. Liu, J. Yang, M.Z. Pindera, M. Athavaleb, P. Grodzinskia, “Bubble-induced acoustic micromixing, ” Lab Chip, vol.2, pp.151-157, 2002.
[18] R. H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J. Yang, P. Grodzinski, “Hybridization Enhancement Using Cavitation Microstreaming, ” Analytical Chemistry, vol.75, pp.1911-1917, 2003.
[19] M. Nimafar,V. Viktorov, M. Martinelli, “Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels, ” Chemical Engineering Science, vol.76, pp.37-44, 2012.
[20] H. Wang, P. Iovenitti, E. Harvey, S. Masood, “Optimizing layout of obstacles for enhanced mixing in microchannels,” Smart Mater. Struct., vol.11, pp.662-667, 2002.
[21] A.A.S. Bhagat, E.T.K. Peterson, I. Papautsky, “A passive planar micromixer with obstructions for mixing at low Reynolds numbers,” J. Micromech. Microeng., vol.17, pp.1017-1024, 2007.
[22] B. He, B.J. Burke, X. Zhang, R. Zhang, F. E. Regnier, “A Picoliter-Volume Mixer for Microfluidic Analytical Systems,” Anal. Chem., vol73, pp.1942-1947, 2001.
[23] R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of Microelectromechanical Systems, vol. 9, No. 2, pp.190-197, 2000.
[24] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G. M. Whitesides, “Chaotic Mixer for Microchannels,” SCIENCE, vol.295, pp.647-651, 2002.
[25] S.P. Kee, A. Gavriilidis, “Design and characterisation of the staggered herringbone mixer,” Chemical Engineering Journal, vol.142, pp.109-121, 2008.
[26] J. Aubina, D.F. Fletcherb, C. Xuereba, “Design of micromixers using CFD modelling,” Chemical Engineering Science, vol.60, pp.2503-2516, 2005.
[27] J.T. Yang, K.J. Huang, Y.C. Lin, “Geometric effects on fluid mixing in passive grooved micromixers, ” Lab Chip, vol.5, pp.1140-1147, 2005.
[28] N.S. Lynn, D.S. Dandy, “Geometrical optimization of helical flow in grooved micromixers, ” Lab Chip, vol.7, pp.580-587, 2007.
[29] M.A. Ansari, K.Y. Kim, “Shape optimization of a micromixer with staggered herringbone groove, ” Chemical Engineering Science, vol.62, pp.6687-6695, 2007.
[30] T.J. Johnson, D. Ross, L.E. Locascio, “Rapid Microfluidic Mixing, ” Anal. Chem., vol.74, pp.45-51, 2002.
[31] J.P. Golden, T.M. Floyd-Smith, D. R. Mott, F.S. Ligler,“Target delivery in a microfluidic immunosensor, ” Biosensors and Bioelectronics, vol.22, pp.2763-2767, 2007.
[32] R. Goovaerts, W. Smits, G. Desmet, J. Denayer, W. D. Malsche, “Combined improved mixing and reduced energy dissipation by combining convective effects and lamination,” Chemical Engineering Journal, vol.211-212, pp.260-269, 2012.
[33] Y. Lina, X. Yua, Z. Wangb, S.T. Tua, Z. Wang, “Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation,” Chemical Engineering Journal, vol.171, pp.291-300, 2001.
[34] M. Riahi, “Fabrication of a passive 3D mixer using CO2 laser ablation of PMMA and PDMS moldings,” Microchemical Journal, vol.100, pp.14-20, 2012.
[35] E. Saatdjiana, A.J.S. Rodrigob, J.P.B. Motab, “On chaotic advection in a static mixer,” Chemical Engineering Journal, vol.187, pp.289-298, 2012.
[36] C.A. Cortes-Quiroza, A. Azarbadegana, M. Zangeneha, A. Gotob, “Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer,” Chemical Engineering Journal, vol.160, pp.852-864, 2010.
[37] M. Engler, N. Kockmann, T. Kiefer, P. Woias, “Numerical and experimental investigations on liquid mixing in static micromixers,” Chemical Engineering Journal, vol.101, pp.315-322, 2004.
[38] S. K. Sia, G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, vol.24, pp.3563-3576, 2003.
[39] Y. Sun, Y. C. Kwok, “Polymeric microfluidic system for DNA analysis, ” Analytica Chimica Acta, vol.556, pp.80-96, 2006.
[40] M. Heckele, W.K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng., vol.14, pp.R1-R14, 2004.
[41] H.D. Rowland, W.P. King,“Polymer deformation and filling modes during microembossing,” J. Micromech. Microeng., vol.14, 1625-1632, 2004.
[42] Y.C. Su, J. Shah, L. Lin,“Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng., vol.14, pp.415-422, 2004.
[43] F. Dang, O. Tabata, M. Kurokawa, A.A. Ewis, L. Zhang, Y. Yamaoka, S. Shinohara, Y. Shinohara, M. Ishikawa, Y. Baba,“High-Performance Genetic Analysis on Microfabricated Capillary Array Electrophoresis Plastic Chips Fabricated by Injection Molding,” Anal. Chem., vol.77, pp.2140-2146, 2005.
[44] M. Bua, T. Melvin, G.J. Ensell, J.S. Wilkinson, A.G.R. Evans, “A new masking technology for deep glass etching and its microfluidic application,” Sensors and Actuators A, vol.115, pp.476-482, 2004.
[45] A. Berthold, P. M. Sarro, M.J. Vellekoop, “Two-step glass wet-etching for micro-fluidic devices,” Proceedings of the SeSens workshop, 2000.
[46] L. Ceriottia, K. Weibleb, N.F. de Rooija, E. Verpoortea,“R ectangular channels for lab-on-a-chip applications,” Microelectronic Engineering, vol.67-68, pp.865-871, 2003.
[47] D. Mijatovic, J.C.T. Eijkel, A. van den Berg, “Technologies for nanofluidic systems: top-down vs. bottom-up—a review,”Lab chip, vol.5, pp.492-500, 2005.
[48] T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, “Plastic advances microfluidic devices,” Anal. Chem., vol.74, pp. 78A-86A, 2002.
[49] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan,“Fabrication of Plastic Microfluid Channels by Imprinting Methods,” Anal. Chem.,vol. 69, pp.4783-4789, 1997.
[50] H.Takaoa, K. Miyamurab, H. Ebib, M. Ashikia, K. Sawadaa, M. Ishidaa,“A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test, ” Sensors and Actuators A, vol.119, pp.468-475, 2005.
[51] J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. van der Wijngaart, G. Stemme,“A liquid-triggered liquid microvalve for on-chip flow control, ” Sensors and Actuators B, vol.100, pp.463-468, 2004.
[52] R.Pal, M. Yang, B.N. Johnson, D.T. Burke, M.A. Burns,“Phase Change Microvalve for Integrated Devices,” Anal. Chem., vol.76, pp.3740-3748, 2004.
[53] P. Vulto, T. Huesgen, B. Albrecht, G. A. Urban,“ A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist,” J. Micromech. Microeng., vol.19, 077001, 2009.
[54] B.J. Polk, A. Stelzenmuller, G. Mijares,W. MacCrehanb, M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics,” Sensors and Actuators B, vol.114, pp.239-247, 2006.
[55] E.T. Enikov, J.G. Boyd,“Electroplated electro-fluidic interconnects for chemical sensors, ” Sensors and Actuators, vol.84, pp.161-164, 2000.
[56] J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang ,T.H. Young,“Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip, ” J. Micromech. Microeng., vol.15, pp.1147-1156, 2005.
[57] C.G.K. Malek,“Laser processing for bio-microfluidics applications (part II), ” Anal Bioanal Chem, vol.385, pp.1362-1369, 2006.
[58] W.C. Jung, Y.M. Heo, G.S. Yoon, K.H. Shin, S.H. Chang, G.H. Kim, M.W. Cho,“Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips,” Sensors, vol.7, pp.1643-1654, 2007.
[59] D.S. Zhao, B. Roy, M.T. McCormick, W.G. Kuhr, S.A. Brazill, “Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining, ” Lab chip, vol.3, pp.93-99, 2003.
[60] J.S. Mecombera, D. Hurdb, P.A. Limbach,“Enhanced machining of micron-scale features in microchip molding masters by CNC milling, ” International Journal of Machine Tools & Manufacture, vol.45, pp.1542-1550, 2005.
[61] M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper,“High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters,” Proc. of SPIE, vol.6112, pp.61120B1-12, 2005.
[62] M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, R. Hergenrödera, “A new on-chip ESI nozzle for coupling of MS with microfluidic devices,” Lab chip, vol.4, pp.220-224, 2004.
[63] G.S. Fiorini, D.T. Chiu,“Disposable microfluidic devices: fabrication, function, and application,” BioTechniques, vol.38, pp. 429-446, 2005.
[64] W. Wang, S.H. Kweon, S.H. Yang,“A study on roughness of the micro-end-milled surface produced by a miniatured machine tool,” Journal of Materials Processing Technology, vol.162-163, pp.702-708, 2005.
[65] E. Vázquez, C.A. Rodríguez, A. Elías-Zúñiga, J. Ciurana,“An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling,” Int J Adv Manuf Technol, vol.51 pp.945-955, 2010.
[66] M. Arif , M. Rahman, W.Y. San,“An experimental investigation into micro ball end-milling of silicon,” Journal of Manufacturing Processes, vol.14, pp.52-61, 2012.
[67] J.A. Ghani, I.A. Choudhury, H.H. Hassan,“Application of Taguchi method in the optimization of end milling parameters,” Journal of Materials Processing Technology, vol.145, pp.84-92, 2004.
[68] C. Gologlu, N. Sakarya,“The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method,” Journal of Materials processing Technology, vol.206, pp.7-15, 2008.
[69] K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob,“Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, vol.125, pp.2413-2416, 2014.
[70] C.W. Beh, W. Zhouab, T.H. Wang,“PDMS–glass bonding using grafted polymeric adhesive – alternative process flow for compatibility with patterned biological molecules,” Lab Chip, vol.12, pp.4120-4127, 2012.
[71] L. Du, H. Chang, M. Song, C. Liu,“A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip,” Microsyst Technol, vol.18, pp.423-428, 2012.
[72] H. Becker, U. Heim,“Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators, vol.83, pp.130-135, 2000.
[73] B. Bilenberg, T. Nielsen, B. Clausen, A. Kristensen1,“PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng., vol.14, pp.814-818, 2004.
[74] M.A. Eddings, M.A. Johnson, B.K. Gale,“Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng., vol.18, 067001(4p), 2008.
[75] S.M. Hong, S.H. Kim, J.H. Kim, H.I. Hwang,“Hydrophilic Surface Modification of PDMS Using Atmospheric RF Plasma,” Journal of Physics: Conference Series., vol.34, pp.656-661, 2006.
[76] K.J. Park, K.G. Lee, S.Seok, B.G. Choi, M.K. Lee, T.J. Park, J.Y. Park, D.H. Kim, S.J. Lee,“Micropillar arrays enabling single microbial cell encapsulation in hydrogels,” Lab Chip, vol.14, pp.1873-1879, 2014.
[77] S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay,“Studies on Surface Wettability of Poly(Dimethyl) Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,”JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol.14, No.3, pp.590-597, 2005.
[78] K. Kim1, S.W. Park, S.S. Yang,“The optimization of PDMS-PMMA bonding process using silane primer,” BioChip J., vol.4(2), pp.148-154, 2010.
[79] B.H. Jo, L.M.V. Lerberghe, K.M. Motsegood, D.J. Beebe,“ Three - Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol.9, No.1, pp.76-81, 2000.
[80] J.Y. Kima, J.Y. Baeka, K.A. Leeb, S.H. Lee,“Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels,” Sensors and Actuators A, vol.119, pp.2005, 593-598, 2005.
[81] 蔡明峰,“數值模擬及微粒子影像速度於微混合器效能分析之應用,”國立中山大學,機械與機電工程學系,碩士論文,2005。
[82] Y. Fang, Y. Ye, R. Shen, P. Zhu, R. Guo, Y. Hu, L. Wu,“Mixing enhancement by simple periodic geometric features in microchannels,” Chemical Engineering Journal, vol.187, pp.306-310, 2012.
[83] 張簡復中(民99)。數位影像處理使用Matlab7.X。台北市:松崗資產管理股份有限公司。
[84] 方偉峰,“微生化反應器之研發與物種速度暨濃度場之同步診測,”國立清華大學,動力機械工程學系,博士論文,2008。

QR CODE