簡易檢索 / 詳目顯示

研究生: 王立紘
Li-Hong Wang
論文名稱: 微振動式射出壓印成形於離軸非球面光柵元件之成形誤差分析研究
Research on Form Error of Off-Axial Aspherical Reflective Grating Element by Micro Vibratile Injection Embossing Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
黃國政
Kuo-Cheng Huang
洪健翔
Chien-Hsiang Hung
周育任
Yu-Jen Chou
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 181
中文關鍵詞: 離軸非球面光柵元件射出壓縮成形微振動式射出壓印成形變模溫製程技術
外文關鍵詞: Off-axial Aspherical (OAA), Grating Element, Injection Compression Molding (ICM), Micro Vibratile Injection Embossing Molding (MV-IEM), Varithermo Mold Temperature (VMT)
相關次數: 點閱:208下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發整合不同射出成形製程應用於離軸非球面反射式光柵光學元件 (Off-Axial Aspherical Reflective Grating Optical Element, OAA-RGOE) 製程,以降低非球面誤差及增進光學性能。本論文延續先前研究成果,利用射出機台之週期訊號擷取與壓電致動器控制系統作結合之微振動式射出壓印成形(Micro Vibratile Injection Embossing Molding, MV-IEM)與變模溫製程(Varithermo Mold Temperature, VMT),並加入射出壓縮成形(Injection Compression Molding, ICM)作製程整合,以提升光柵元件之成形。研究方式首先於傳統射出成形進行OAA-RGOE之成形實驗尋找最佳射出成形參數,後續進行不同製程之成形比較。探討巨觀尺度下非球面之殘餘誤差(Residual error, Rt)及微觀尺度下微結構之成形複製率(Groove Filling Ratio, GFR)。結合不同射出成形製程下,可得最佳之Rt值為16.05 μm及GFR為92.27 %。加入VMT製程技術,可有效改善因肉厚不均所形成翹曲缺陷,但對微結構複製率具些微影響,Rt值可降至15.63 μm,GFR稍降低至91.14 %。OAA-RGOE以光學單頻譜檢測,多種單頻譜皆有聚焦特徵,雜散光檢測最小為6.39 %。未來研究可進行非球面設計值與實際模仁之殘餘誤差並優化模仁設計,使光柵元件精準度更有效提升。


    This study aims to fabricate an off-axial aspherical reflective grating optical element (OAA-RGOE) with micro-structures using integration of injection molding processes. The molding cycle signal and control system of the piezo actuator have been integrated with Micro Vibratile Injection Embossing Molding (MV-IEM), Varithermo Mold Temperature (VMT), and Injection Compression Molding (ICM) for process integration to enhance the precision of the grating element. First, the OAA-RGOE is carried out by conventional injection molding machine in order to find out the operational windows injection molding parameters. Effects of residual error (Rt) of the off-axial aspheric surface and Groove Filling Ratio (GFR) are discussed; combination in injection molding processes are also evaluated. The combination of MV-IEM and ICM show the best results, which Rt value can reach to 16.05 μm and GFR to 92.27 %. Furthermore, the additional VMT in MV-IEM and ICM process is able to improve warpage deformation caused by the uneven grating thickness, yet slightly influence on GFR microstructure replication. Results showed that the Rt value can be reduced to 15.63 μm and the GFR to 91.14 %. As a result of optical detection, the OAA-RGOE owns focusing characteristics with certain wavelengths. The smallest stray light detection can detect as 6.39 %, as compared with previous study as 5.84 %. For future works, the residual error between off-axial aspherical design and the measurement results of OAA-RGOE can be evaluated as well as optimized the mold insert design.

    目錄 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 XI 表目錄 XVIII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 研究方法 4 1.4 論文架構 5 第二章 文獻回顧 7 2.1 射出壓縮成形相關文獻 7 2.2 溫度對射出成形影響相關文獻 16 2.3 微奈米尺度結構射出成形相關文獻 23 2.4 相關專利文獻回顧 29 2.5 歷屆光柵研究成果 30 2.6 文獻回顧總結 31 第三章 製程技術介紹 33 3.1 離軸非球面反射式光學元件 33 3.1.1 離軸非球面 33 3.1.2 光柵光學元件 34 3.2 射出成形製程介紹 35 3.2.1 射出成形基本模式 35 3.2.2 變模溫射出成形製程 36 3.2.3 射出壓縮成形 37 3.2.4 壓電致動器介紹 38 3.2.5 微振動式射出壓印成形 39 3.3 製程整合 40 3.4 液晶聚合物介紹 41 3.4.1 液晶聚合物-熱性質檢測方式 42 3.4.2 液晶聚合物-熱性質檢測結果 44 3.5 成形誤差 46 第四章 模流分析與模具結構 48 4.1 模流分析 48 4.1.1 射出成形參數模擬 50 4.1.2 變模溫製程模擬分析 59 4.2 反射式光學元件模具與模仁設計 61 第五章 實驗設備與規劃 65 5.1 實驗設備 65 5.1.1 射出成形製程設備 65 5.1.2 變模溫製程模組 67 5.1.3 MV-IEM控制系統 69 5.1.4 微振動式製程模組 71 5.2 量測設備 75 5.3 射出成形實驗規劃 78 5.3.1 實驗流程 78 5.3.2 實驗參數設定 80 5.3.3 產品取樣方式 84 5.3.4 短射實驗 84 5.3.5 成形視窗 86 5.4 離軸非球面與微結構量測 87 5.4.1 離軸非球面量測 87 5.4.2 微結構複製率量測 89 5.5 光學分析 90 5.5.1 鍍反射模 90 5.5.2 光譜檢測 91 第六章 實驗結果與討論 92 6.1 變模溫製程之模內溫度變化 92 6.2 不同製程之模穴壓力變化 93 6.3 試量產製程穩定測試 94 6.4 離軸非球面檢測結果 97 6.4.1 傳統射出成形(IM)之殘餘誤差結果分析 98 6.4.2 射出壓縮成形(ICM)之殘餘誤差結果分析 101 6.4.3 不同成形製程之殘餘誤差結果比較 104 6.5 微結構複製率檢測結果 108 6.5.1 傳統射出成形(IM)之複製率結果分析 109 6.5.2 射出壓縮成形(ICM)之複製率結果分析 113 6.5.3 不同成形製程之複製率結果比較 116 6.6 表面檢測結果 118 6.7 光學檢測結果 124 6.8 綜合結果與討論 134 第七章 結論與建議 136 7.1 結論 136 7.2 建議 138 參考文獻 140 附錄A 塑膠材料特性表 145 附錄B 塑膠材料LCP特性表-Moldex3D 146 附錄C 模具設計圖 147 C-1 模具設計圖-母模側 147 C-2 模具設計圖-公模側 148 C-3 模具組立圖 149 附錄D 模仁設計圖 150 附錄E 射出成形機 FANUC ROBOSHOT α-15iA 151 附錄F 冰水模溫機(科基 KC-0502W) 152 附錄G LabVIEW圖控程式 153 附錄H 石英壓力感測器(KISTLER 6157B) 154 附錄I 電荷放大器(KISTLER 5039A) 155 附錄J 壓電致動器Piezomechanik PSt150/20/40 156 附錄K AGE & AGEC曲線量測資料 157 附錄L AGE微結構量測資料 158 L-1 IM 158 L-2 VMT_IM 159 L-3 ICM 160 L-4 VMT_ICM 161 L-5 MV-IEM 162 L-6 VMT_MV-IEM 163 L-7 MV-ICM 164 L-8 VMT_MV-ICM 165 附錄M AGEC微結構量測資料 166 M-1 IM 166 M-2 VMT_IM 167 M-3 ICM 168 M-4 VMT_ICM 169 M-5 MV-IEM 170 M-6 VMT_MV-IEM 171 M-7 MV-ICM 172 M-8 VMT_MV-ICM 173 附錄N AGEC光學檢測結果 174 N-1 IM 174 N-2 VMT_IM 175 N-3 ICM 176 N-4 VMT_ICM 177 N-5 MV-IEM 178 N-6 VMT_MV-IEM 179 N-7 MV-ICM 180 N-8 VMT_ MV-ICM 181

    參考文獻
    [1] 賴昶順,"含微結構之非軸對稱非球面反射式光學元件射出成形分析研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2016。
    [2] 侯建宇,"閉迴路微壓電致動系統之射出壓印製程應用於結構光學元件成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2017。
    [3] Michaeli, W., Hebner, S., Klaiber, F., Forster, J., and Eversheim, W., "Geometrical accuracy and optical performance of injection moulded and injection-compression moulded plastic parts," Cirp Annals-Manufacturing Technology, Article vol. 56, pp. 545-548, 2007.
    [4] 李豐吉,"多尺度複合式光學元件射出成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2009。
    [5] 王志豪,"振動式射壓於複合式光學元件射出成形之研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2010。
    [6] 詹家銘,"多尺度非球面陣列透鏡之振動式射出壓縮成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2012。
    [7] Hassan, H., "An experimental work on the effect of injection molding parameters on the cavity pressure and product weight," International Journal of Advanced Manufacturing Technology, Article vol. 67, pp. 675-686, Jul 2013.
    [8] Sortino, M., Totis, G., and Kuljanic, E., "Comparison of Injection Molding Technologies for the Production of Micro-optical Devices," Procedia Engineering, vol. 69, pp. 1296-1305, 2014.
    [9] 游承凡,"微型光柵光學元件製造之射出成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2015。
    [10] Lee, K. L. et al., "Injection compression molding of transmission-type Fano resonance biochips for multiplex sensing applications," Applied Materials Today, vol. 16, pp. 72-82, 2019.
    [11] Hattori, S., Nagato, K., Hamaguchi, T., and Nakao, M., "Rapid injection molding of high-aspect-ratio nanostructures," Microelectronic Engineering, Article; Proceedings Paper vol. 87, pp. 1546-1549, 2010.
    [12] Xiao, C. L. and Huang, H. X., "Development of a rapid thermal cycling molding with electric heating and water impingement cooling for injection molding applications," Applied Thermal Engineering, Article vol. 73, pp. 712-722, 2014.
    [13] Lucchetta, G., Sorgato, M., Carmignato, S., and Savio, E., "Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces," Cirp Annals-Manufacturing Technology, Article vol. 63, pp. 521-524, 2014.
    [14] Nugay, I. I. and Cakmak, M., "Instrumented film-insert injection compression molding for lens encapsulation of liquid crystal displays," Displays, Article vol. 38, pp. 20-31, 2015.
    [15] La, M., Park, S. M., Kim, W., Lee, C., Kim, C., and Kim, D. S., "Injection Molded Plastic Lens for Relay Lens System and Optical Imaging Probe," International Journal of Precision Engineering and Manufacturing, Article vol. 16, pp. 1801-1808, 2015.
    [16] De Santis, F. and Pantani, R., "Development of a rapid surface temperature variation system and application to micro-injection molding," Journal of Materials Processing Technology, Article vol. 237, pp. 1-11, 2016.
    [17] Xiao, C. L., Huang, H. X., and Yang, X., "Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts," Applied Thermal Engineering, Article vol. 100, pp. 478-489, 2016.
    [18] Meister, S., Seefried, A., and Drummer, D., "Replication quality of micro structures in injection moulded thin wall parts using rapid tooling moulds," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, Article vol. 22, pp. 687-698, 2016.
    [19] Speranza, V., Liparoti, S., Calaon, M., Tosello, G., Pantani, R., and Titomanlio, G., "Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution," Materials & Design, Article vol. 133, pp. 559-569, 2017.
    [20] Zhang, N., Zhang, H., Stallard, C., Fang, F., and Gilchrist, M. D., "Replication integrity of micro features using variotherm and vacuum assisted microinjection moulding," CIRP Journal of Manufacturing Science and Technology, vol. 23, pp. 20-38, 2018.
    [21] Wu, C. H. and Chen, W. S., "Injection molding and injection compression molding of three-beam grating of DVD pickup lens," Sensors and Actuators a-Physical, Article vol. 125, pp. 367-375, 2006.
    [22] Masato, D., Sorgato, M., and Lucchetta, G., "Analysis of the influence of part thickness on the replication of micro-structured surfaces by injection molding," Materials & Design, Article vol. 95, pp. 219-224, 2016.
    [23] Holthusen, A. K., Riemer, O., Schmutz, J., and Meier, A., "Mold machining and injection molding of diffractive microstructures," Journal of Manufacturing Processes, Article vol. 26, pp. 290-294, 2017.
    [24] Surace, R., Bellantone, V., Trotta, G., and Fassi, I., "Replicating capability investigation of micro features in injection moulding process," Journal of Manufacturing Processes, Article vol. 28, pp. 351-361, 2017.
    [25] Muntada-López, O., Pina-Estany, J., Colominas, C., Fraxedas, J., Pérez-Murano, F., and García-Granada, A., "Replication of nanoscale surface gratings via injection molding," Micro and Nano Engineering, vol. 3, pp. 37-43, 2019.
    [26] 韓志翔,"光學薄件的成形方法",中華民國專利,公開號201107805A1,2011。
    [27] Chen, C. C., Lee, F. C., Wang, K. L., and Yeh, C. H., "IN-MOLD VIBRATILE INJECTION COMPRESSION MOLDING METHOD AND MOLDING APPARATUS THEREOF," U. S. Pat., 20150336316A1, 2015.
    [28] 陳炤彰,游承凡,賴昶順,侯建宇,"具有微結構之光學元件的製造方法",中華民國專利,公開號201825382A,2018。
    [29] 陳建人,"光學元件精密製造與檢測",國家實驗研究院儀器科技中心,新竹,台灣,2007。
    [30] 江柏漢,"利用PZT聲波致動器驅動產生氣體非線性振動行為之探討",碩士論文,機械工程系,國立臺灣科技大學,台北市,2008。
    [31] 劉士榮,"高分子流變學",滄海書局,2005。
    [32] 張子成,邢繼綱,"塑膠產品設計",全華圖書,2008。
    [33] 王茂齡,張榮語,許嘉翔,"模流分析理論與實務",科盛科技股份有限公司,新竹,台灣, 2018。

    QR CODE