簡易檢索 / 詳目顯示

研究生: 鍾宇凡
Yu-Fan Chang
論文名稱: PEDOT:PSS導電高分子/α相二氧化錳之複合觸媒用於鋅空氣電池陰極之研究
Study of Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/α-MnO2 as Composite Cathode for Zinc-Air Battery
指導教授: 郭俞麟
Yu-Lin Kuo
周宏隆
Hung-Lung Chou
口試委員: 郭俞麟
Yu-Lin Kuo
周宏隆
Hung-Lung Chou
蘇昱銘
Yu-Ming Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 鋅空氣電池二氧化錳導電高分子
外文關鍵詞: Zinc air battery, Manganese dioxide, Conducting polymer
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用簡單操作方法將陰極催化觸媒α相二氧化錳以不同比例之微量導電高分子PEDOT:PSS做表面改質,藉由PEDOT:PSS提供導電路徑給導電度不佳之α相二氧化錳,提升觸媒之導電性,加速電子傳導,進而使空氣電池之電性提升。
    實驗以過錳酸鉀及醋酸錳作為前驅物,透過固態法製備α相二氧化錳觸媒,並透過溶膠凝膠法使製備之α相二氧化錳表面有不同比例之微量PEDOT:PSS塗層。在催化觸媒材料之鑑定方面,利用X光繞射儀、傅立葉轉換紅外光譜儀、場發掃描式電子顯微鏡以及場發穿透式電子顯微鏡等分析工具鑑定材料,觀察到由固態法製備之α相二氧化錳為細短棒狀(rod-like)之型態,材料表面有微量PEDOT:PSS之分布。
    將不同PEDOT:PSS比例之α相二氧化錳催化觸媒搭配碳材塗佈於碳紙上,製備成空氣陰極進行電化學活性分析,分別測試半電池極化曲線、全電池充放電、交流阻抗分析及鋅空氣全電池放電方析。透過線性掃描伏安法測試結果得到,比例為1 %
    PEDOT:PSS之α相二氧化錳在-0.6 V(vs. SCE)下有較高之電流密度-297.67 mA/cm2,以全電池充放電測試其穩定性,發現不論添加多少PEDOT:PSS之α相二氧化錳之庫倫效率皆於90 %左右,透過交流阻抗分析之等效電路可發現比例為1 %PEDOT:PSS之α相二氧化錳不論充放電循環前還是後皆有最小之電荷轉移電阻(Rct),證明添加1 %PEDOT:PSS之α相二氧化錳有較好之電性表現,以鋅金屬作為陽極測試全電池放電結果,證明PEDOT:PSS塗層不影響電池壽命但使放電電壓提升。


    This study use the simple experimental to make α-MnO2 have different ratio of a little bit of PEDOT:PSS coating. PEDOT:PSS provide electronic transmission path to α-MnO2, because α-MnO2 have poor conductivity and promote battery performance.
    In this study, α-MnO2 powders were prepared by solvent-free solid state method. Different ratio of PEDOT:PSS/α-MnO2 were prepared by sol-gel method. The materials had been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM) and field emission transmission electron microscopy (FE-TEM). It was observed that the α-MnO2 prepared by solvent-free solid state method was a rod-like type with a little bit of PEDOT: PSS distribution on the surface of the material.
    Different PEDOT: PSS ratio of α-MnO2 catalyst with carbon coated on carbon paper. Preparation of air cathode were used for studying the electrochemical properties by half-cell polarization curve, full-cell charge/discharge test, EIS analysis and zinc air battery discharge test. Linear Sweep Voltammetry (LSV) measurement exhibited the current density of 1 %PEDOT: PSS/α-MnO2 further reached -297.67 mA/cm2 at -0.6 V(vs. SCE). Cycle stability test demonstrated the Coulombic efficiency of any ratio of PEDOT :PSS/
    α-MnO2 close to 90 %. EIS analysis revealed 1 %PEDOT: PSS/α-MnO2 has lower Rct. It was demonstrated that 1 %PEDOT: PSS/α-MnO2 was evidently provided with excellent electrochemical activity.

    目錄 誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 空氣電池 1 1.3 研究動機 2 第二章 文獻回顧 3 2.1 電池簡介 3 2.1.1 電化學電池原理 6 2.1.2 一次電池 6 2.1.3 二次電池 7 2.1.4 燃料電池 8 2.2 金屬空氣電池 10 2.2.1 金屬空氣電池發展史 10 2.2.2 金屬空氣電池之特性 11 2.2.3 金屬空氣電池之機制 13 2.3 鋅空氣電池 15 2.3.1 鋅空氣電池之陽極反應 16 2.3.2 鋅空氣電池之陰極反應 17 2.3.3 鋅空氣電池陽極材料 19 2.3.4 電解質 20 2.3.5 氣體擴散層 20 2.3.6 集電網 21 2.3.7 催化層 21 2.3.8 碳材 22 2.3.9 空氣陰極之觸媒 22 2.4 二氧化錳 25 2.5 導電高分子 29 2.5.1 PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) 30 2.5.2 PEDOT:PSS與催化觸媒合成 32 第三章 實驗程序 35 3.1 實驗流程 35 3.2 實驗藥品 36 3.3 實驗設備 37 3.4 實驗方法 38 3.4.1 以固態法製備α相二氧化錳觸煤粉末 38 3.4.2 PEDOT:PSS與二氧化錳之合成 40 3.4.3 空氣陰極之製備 40 3.4.4 檢測儀器 42 3.4.5 空氣陰極之氧氣生成/還原活性測試 43 3.4.6 鋅空氣電池之全電池充放電測試 44 3.4.7 空氣陰極之電化學組抗頻譜分析 45 第四章 結果與討論 46 4.1 製備α相二氧化錳並與不同比例之PEDOT:PSS合成 47 4.2 空氣陰極之電化學活性分析 57 4.2.1 α相二氧化錳於不同塗佈厚度之線性伏安法(LSV)測試 57 4.2.2 不同PEDOT:PSS比例之α相二氧化錳之線性伏安法(LSV)測試 58 4.3 組裝全電池充放電循環壽命分析 60 4.3.1 不同PEDOT:PSS比例之α相二氧化錳之充放電循環壽命測試 60 4.3.2 不同PEDOT:PSS比例之α相二氧化錳之電化學阻抗頻譜(EIS)分析 66 4.4 組裝鋅空氣電池之全電池放電測試 76 4.5 添加PEDOT:PSS於鑭鍶錳氧化物之線性伏安法(LSV)測試 77 4.6 陰極催化觸媒於三相反應區之機制圖說明 78 第五章 結論與未來展望 81 5.1 實驗結論 81 5.2 未來展望 82 參考文獻 83 圖目錄 圖2-1. 伏打電池 3 圖2-2. 電池的種類 4 圖2-3. 燃料電池之工作原理 5 圖2-4. 丹尼爾電池(Daniell cell)之工作原理 5 圖2-5. 金屬空氣電池之工作原理 10 圖2-6. 氧氣還原反應之機制 14 圖 2-7. 鋅空氣電池之結構圖 15 圖2-8. 空氣電池陰極之三相區 17 圖2-9. 空氣電池陰極之三相區 18 圖2-10. 空氣電池陰極構造 18 圖2-11. 多孔氣體擴散層之示意圖 21 圖2-12. α、β、γ、δ、λ五種不同晶相二氧化錳之晶體結構圖 26 圖2-13. 極子(polaron)與雙極子(bipolaron)能階圖 29 圖2-14. EDOT分子模擬圖 31 圖2-15. PEDOT:PSS化學結構 31 圖2-16. 不同PEDOT:PSS比例Li1.2Ni0.2Mn0.6O2之循環性能 33 圖2-17. MnO2及MnO2/PEDOT:PSS循環性能比較 33 圖2-18. Mn2O3及Mn2O3/PEDOT:PSS於100 mA/g之循環性能比較 34 圖2-19. 線性伏安法於掃描速率為5 mV/s (a) 10BC, (b) β- MnO2/10AA,(c) α- MnO2/10AA, (d) PEDOT/β- MnO2/10AA, and (e) PEDOT/α- MnO2/10AA 34 圖3-1. 實驗架構流程 35 圖3-2. 固態法製備二氧化錳粉末流程圖 39 圖3-3. 利用固態法製備α相二氧化錳之XRD圖 39 圖3-4. 以PEDOT:PSS做表面修飾之製備流程圖 41 圖3-5. 空氣陰極試片製作流程圖 41 圖3-6. 空氣電池線性掃描伏安法測試示意圖 43 圖3-7. 空氣電池充放電測試示意圖 44 圖4-1. 不同PEDOT:PSS比例之α相二氧化錳之XRD圖譜 48 圖4-2. 不同PEDOT:PSS比例之α相二氧化錳之FTIR圖譜 48 圖4-3. 比例為0 %PEDOT:PSS之α相二氧化錳之SEM圖(a)兩萬倍、(b)五萬倍、(c)十萬倍 50 圖4-4. 比例為0.5 %PEDOT:PSS之α相二氧化錳之SEM圖(a)兩萬倍、(b)五萬倍、(c)十萬倍 51 圖4-5. 比例為1 %PEDOT:PSS之α相二氧化錳之SEM圖(a)兩萬倍、(b)五萬倍、(c)十萬倍 52 圖4-6. 比例為1.5 %PEDOT:PSS之α相二氧化錳之SEM圖(a)兩萬倍、(b)五萬倍、(c)十萬倍 53 圖4-7. 比例為2 %PEDOT:PSS之α相二氧化錳之SEM圖(a)兩萬倍、(b)五萬倍、(c)十萬倍 54 圖4-8. 比例為1 %PEDOT:PSS之α相二氧化錳(a)TEM圖、(b)元素分布圖 55 圖4-9. 比例為2 %PEDOT:PSS之α相二氧化錳(a)TEM圖、(b)元素分布圖 56 圖4-10. α相二氧化錳於不同塗佈厚度之線性掃描伏安圖 59 圖4-11. 不同PEDOT:PSS比例之α相二氧化錳之線性掃描伏安圖 59 圖4-12. 比例為0 %PEDOT:PSS之α相二氧化錳全電池電圖(a)3小時、(b)10小時,(c)庫倫效率圖 61 圖4-13. 比例為0.5 %PEDOT:PSS之α相二氧化錳全電池電圖(a)3小時、(b)10小時,(c)庫倫效率圖 62 圖4-14. 比例為1 %PEDOT:PSS之α相二氧化錳全電池電圖(a)3小時、(b)10小時,(c)庫倫效率圖 63 圖4-15. 比例為1.5 %PEDOT:PSS之α相二氧化錳全電池電圖(a)3小時、(b)10小時,(c)庫倫效率圖 64 圖4-16. 比例為2 %PEDOT:PSS之α相二氧化錳全電池電圖(a)3小時、(b)10小時,(c)庫倫效率圖 65 圖4-17. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環前分別在(a)OER、(b)ORR操作電位下之Nyquist圖 69 圖4-18. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環後分別在(a)OER、(b)ORR操作電位下之Nyquist圖 70 圖4-19. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環前在OER操作電位下之實驗曲線和模擬曲線(a)0 %、(b)0.5 %、(c)1 %、(d)1.5 %、(e)2 %、(f)等效電路圖 71 圖4-20. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環前在ORR操作電位下之實驗曲線和模擬曲線(a)0 %、(b)0.5 %、(c)1 %、(d)1.5 %、(e)2 %、(f)等效電路圖 72 圖4-21. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環後在OER操作電位下之實驗曲線和模擬曲線(a)0 %、(b)0.5 %、(c)1 %、(d)1.5 %、(e)2 %、(f)等效電路圖 73 圖4-22. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環後在ORR操作電位下之實驗曲線和模擬曲線(a)0 %、(b)0.5 %、(c)1 %、(d)1.5 %、(e)2 %、(f)等效電路圖 74 圖4-24. 不同PEDOT:PSS比例之鑭鍶錳氧化物之線性掃描伏安圖 79 圖4-25. 不同PEDOT:PSS比例之鑭鍶錳氧化物及α相二氧化錳之線性掃描伏安圖 79 圖4-26. (a)空氣電池之陰極,(b) α-MnO2/XC-72、(c)(d) α-MnO2/PEDOT:PSS/XC-72於三相反應區之機制圖 80 表目錄 表2-1. 為二次電池特性比較 8 表2-2. 金屬空氣電池之優缺點 12 表2-3. 各種不同陽極金屬之特性比較 12 表2-4. 不同方式抑制陽極腐蝕之比較 19 表2-5. 碳材有利於電池應用之特性 22 表2-6. 文獻中鋅空氣電池之陰極觸媒 23 表2-7. 觸媒材料與效率表 24 表2-8. 不同相二氧化錳之尺寸大小與隧道型態表 26 表2-9. 合成二氧化錳方法及前驅物種類 27 表4-1. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環前之模擬電路元件 75 表4-2. 不同PEDOT:PSS比例之α相二氧化錳於50次充放電循環後之模擬電路元件 75

    參考文獻
    1. 歷年發電量占比,台灣電力公司,2016。
    2. A policy framework for climate and energy in the period from 2020 to 2030, European commission, 2014.
    3. Erneuerbaren Energien weltweit zum Durchbruch verhelfen, Agentur fürErneuerbare Energien.
    4. M. Steigenberger, E. Bayer, M. M. Kleiner, Report on the German power system Version 1.01, 2015.
    5. 張雲朋,燃料電池:由空氣產生電能的新能源-鋅空氣燃料電池,科學發展,2003/7月,367 期,12~15頁。
    6. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, J.Electrochem. Soc., 2002, 149, 4.
    7. L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, Electrochim. Acta, 2003, 48, 1015.
    8. 漢聲精選目擊者叢書,化學,漢聲雜誌社,1996。
    9. 李世興,電池活用手冊,全華,1999。
    10. M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors, Chem. Rev., 2004, 104, 4245.
    11. 李文雄,鋰電池 E世代的能源,科學發展,2003/2月,362期,32~35頁。
    12. W. R. Grove, On Voltaic Series and the Combination of Gases by Platinum, Philosophical Magazine and Journal of Science vol. XIV, 1839, 127-130.
    13. W. R. Grove, On a Gaseous Voltaic Battery, Philosophical Magazine and Journal of Science vol. XXI, 1842, 417-420.
    14. 楊志忠、林頌恩、韋文誠,燃料電池的發展現況,科學發展,2003/7月,367期,30~33頁。
    15. 金屬空氣電池-高安全、低成本的再生能源儲能技術,經濟部能源局,2015/9月。
    16. J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system, Journal of Power Sources, 1999, 171-179.
    17. 郭炳焜、李新海,楊松青化學電源:電池原理及製造技術,中南大學出版,2009。
    18. B. W. Jensen, M. Forsyth, D. R. MacFarlane, High Rates of Oxygen Reduction over a Vapor Phase Polymerized PEDOT Electrode, Science, 2008.
    19. C. Chang, Zinc-Air Batteries, Technol. Rev, 2001, 86-87.
    20. D. Linden, Handbook of Batteries, McGraw-Hill Publishing company, 2nd ed, 1994.
    21. J. S. Spendelow, A. Wieckowshi, Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media, Phys. Chem. Chem. Phys. 2007, 9, 2654.
    22. P. A. Christensen, A. Hamnett, D. Linares-Moya,Oxygen Reduction and Fuel Oxidation in Alkaline Solution, Phys. Chem. Chem. Phys. 2011, 13, 5206.
    23. W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells– Fundamentals, Technology and Applications, Wiley, Chichester, 2003.
    24. L. Jörisen, Bifunctional Oxygen/Air Electrode, J. Power Sources, 2006, 155, 23.
    25. F. Cheng, J. Chen, Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts, Chem. Soc. Rev., 2012, 41, 2172.
    26. V. Neburchilov, H. Wang, J. J. Martin, W. Qu, A Review on Air Cathodes for Zinc– Air Fuel Cells, J. Power Sources, 2010, 195, 1271.
    27. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee and J. Cho, Metal–air batteries with high energy density: Li–air versus Zn–air Energy, Advanced Energy Materials, 2011, 1, 34.
    28. F. Cheng, J. Chen, Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts, Chem. Soc. Rev., 2012, 41, 2172.
    29. Y. Li,H. Dai, Recent advances in zinc-air batteries, Chem. Soc. Rev., 2014.
    30. T. P. Dirkse, The Behavior of the Zinc Electrode in Alkaline Solutions, J. Electrochem. Soc. 1981, 128, 1412.
    31. W. G. Sunu, D. N. Bennion, Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical, J. Electrochem. Soc., 1980, 127, 2007.
    32. W. G. Sunu, D. N. Bennion, Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical, J. Electrochem. Soc., 1980, 127, 2007-2016.
    33. 曹玉佳,鋅-空氣燃料電池陰極之奈米化結構研發,國立中正大學碩士論文,2007。
    34. P. Pei, K. Wang, Z. Ma, Technologies for extending zinc–air battery’s cyclelife: A review, Applied Energy, 2014 ,315–324.
    35. R. E. Durkot, L. Lin and P. B. Harris, US Pat., 6284410, 2001.
    36. H. Ma, C. S. Li, Y. Su, J. Chen, J. Mater, Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures, Journal of Materials Chemistry, 2007.
    37. J. F. Drillet, M. Adam, S. Barg, A. Herter, D. Koch, V. M. Schmidt and M. Wilhelm, Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack, ECS Trans., 2010, 28, 13.
    38. S. J. Banik and R. Akolkar, J. Electrochem. Soc., 2013, 160, 519.
    39. S. M. Lee, Y. J. Kim, S. W. Eom, N. S. Choi, K. W. Kim, S. B. Cho, J. Power Sources, 2013, 227, 177.
    40. D. P. Bhatt and R. Udhayan, J. Power Sources, 1994, 47, 177.
    41. A. R. S. Kannan, S. Muralidharan, K. B. Sarangapani, V. Balaramachandran and V. Kapali, J. Power Sources,1995, 57, 93.
    42. Y. D. Cho, G. T. K. Fey, J. Power Sources, 2008, 184, 610.
    43. Y. Sato, M. Takahashi, H. Asakura, T. Yoshida, K. Tada, K. Kobayakawa, N. Chiba, K. Yoshida, J. Power Sources,1992, 38, 317.
    44. J. Y. Huot, J. Appl. Electrochem., 1992, 22, 443.
    45. J. McBreen and E. Gannon, J. Power Sources, 1985, 15, 169.
    46. J. McBreen and E. Gannon, J. Electrochem. Soc., 1983, 130, 1980.
    47. S. J. Banik and R. Akolkar, J. Electrochem. Soc., 2013, 160, 519.
    48. J. M. Wang, L. Zhang, C. Zhang, J. Q. Zhang, Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions Original Research, J. Power Sources, 2001, 102, 139.
    49. C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery, Solid State Ionics, 2002, 148, 487.
    50. C. A. Vincent, B. Scrosati, M. Lazzari, F. Bonino,“Modern Battery”, Thomso Litho Ltd, East Kilbrid, Scotland, 1984
    51. G. Q. Zhang, X. G. Zhang, MnO2/MCMB Electrocatalyst for All Solid-State Alkaline Zinc-Air Cells, Electrochim. Acta, 2004, 49, 873.
    52. M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni,Electrochim. Acta, 2000, 46, 423.
    53. F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan, Microbial Fuel Cell Cathodes with Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors, Environ. Sci. Technol., 2010, 44, 1490.
    54. D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, Air–Metal Hydride Secondary Battery with Long Cycle Life, J. Alloys Compd, 2002, 330, 766.
    55. 劉霖錡,鋅空氣電池空氣極的製備與性能,逢甲大學碩士論文,2003。
    56. K. Kinoshita, Carbon: electrochemical and physicochemical properties, Wiley- Interscience, 1988.
    57. Y. Y. Shao, J. Liu, Y. Wang, Y. H. Lin, Novel Catalyst Support Material for PEM Fuel Cell: Current Status and Future Prospects, J. Mater. Chem., 2009, 19, 46.
    58. M. Pirjamali, Y. Kiros, Effects of carbon pretreatment for oxygen reduction in alkaline electrolyte, J. Power Sources, 2002, 109, 446-451.
    59. M. E. Lai, A. Bergel, Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase, J. Electroanal. Chem., 2000, 494, 1, 30-40.
    60. M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries, Electrochim. Acta, 2000, 46, 2-3, 423-432.
    61. H. Meng and P. K. Shen, Electrochem. Commun., 2006, 8, 588.
    62. Y. Li and H. Dai, Recent advances in zinc–air batteries, hem. Soc. Rev., 2014, 43, 5257.
    63. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas- Diffusion Electrodes for Zinc–Air Batteries, J. Power Sources, 2010, 195, 4350.
    64. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts, Nat. Commun., 2013.
    65. J. Yang, J. J. Xu, Nanostructured Amorphous Manganese Oxide Cryogel as a High-Rate Lithium Intercalation Host, Electrochem. Commun., 2003, 5, 306.
    66. Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu, A CoOx/Carbon Double-Layer Thin Film Air Eectrode for Nonaqueous Li-Air Batteries, J. Power Sources, 2013, 223, 312.
    67. Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery, Electrochim. Acta, 2012, 69, 295.
    68. Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow, Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method, Chem. Mater., 2005, 17, 5382.
    69. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media, Chem. Mater., 2010, 22, 898.
    70. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 Nanocrystal on Graphene as a Synergistic Catalyst for Reduction Reaction, Nat. Mater., 2011, 10, 780.
    71. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries, J. Electrochem. Soc., 2011, 158.
    72. N. A. Merino, B. P. Barbero, P. Grange, L. E. Cadus, La1−xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane, J. Catal., 2005, 231, 232.
    73. S. Pathaka, J. Kuebler, A. Payzantc, N. Orlovskaya, Mechanical Behavior and Electrical Conductivity of La1−xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) Perovskites, J. Power Sources, 2010, 195, 3612.
    74. M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, Effect of Structure of the Electrical Performance of Gas Diffusion Electrodes for Metal Air Batteries, Electrochim. Acta, 2000, 46, 423.
    75. J. E. Post, Maganese Oxide Minerals: Crystal Structure and Economic and Environmental Significance, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 3447.
    76. J. P. Bernet, Electrochemical Behaviour of Metallic Oxides, J. Power Sources, 1979, 4, 183.
    77. L. Mao, T. Sotomura, K. Nakatsu, K. Nobuharu, D. Zhang, T. Ohsaka, Electrochemical Characterization of Catalytic Activities ofManganese to Oxygen Reduction in Alkaline Aqueous Solution, J. Electrochem. Soc., 2002, 149, A504.
    78. M. Toupin, T. Brousse, D. Be´langer, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor, Chem. Mater., 2004, 16, 3184.
    79. S. Devaraj, N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties, J. Phys. Chem. C, 2008, 112, 4406.
    80. 李柏潔,奈米結構之Au/MnO2複合陰極觸媒材料對於高效能金屬空氣電池之研究,國立中央大學碩士論文,2013。
    81. N. Wang, X. Cao, G. Lin, Y. Shihe, MnO2 Nanodisks and Their Magnetic Properties, Nanotechnology, 2007, 18, 475605.
    82. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media, Chem. Mater., 2010, 22, 898.
    83. S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation, J. Phys. Chem. C, 2008, 112, 5307.
    84. X. Wang, Y. Li, Selected-Control Hydrothermal Synthesis of MnO2 Single Crystal Nanowires, J. Am. Chem. Soc., 2002, 124, 2880.
    85. Y. Yang, L. Xiao, Y. Zhao, F. Wang, Hydrothermal Synthesis and Electrochemical Characterizationo-MnO2 Nanorods as Cathode Material for Lithium Batteries, Int. J. Electrochem. Sc., 2008, 3, 67.
    86. M. Lua, S. Kharkwala, H. Y. Ng, S. Y. Li, Carbon Nanotube Supported MnO2 Catalysts for Oxygen Reduction Reaction and Their Applications in Microbial Fuel Cells, Biosens. Bioelectron, 2011, 26, 4728.
    87. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, Y. Ahn, K. B. Kim, Electrochemical Properties of Manganese Oxide Coated onto Carbon Nanotubes for Energy Storage Applications, J. Power Sources, 2008, 178, 483.
    88. A. Zolfagharia, F. Ataherian, M. Ghaemi, A. Gholami, Capacitive Behavior of Nanostructured MnO2 prepared by Sonochemistry Method, Electrochim. Acta, 2007, 52, 2806.
    89. H. Adelkhania, M. Ghaemi, Characterization of Manganese Dioxide Electrodeposited by Pulse and Direct Current for Electrochemical Capacitor, J. Alloys Compd, 2010, 493, 175.
    90. S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties, Cryst. Growth Des., 2009, 9, 4356.
    91. M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Hollow Spheres and Hollow Urchins, J. Phys. Chem. C, 2007, 111, 19141.
    92. J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen, Synthesis of Single-Crystal Tetragonal MnO2 Nanotubes, J. Phys. Chem. C, 2008, 112, 12594.
    93. W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen J. Hu, MnO2 Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances, J. Mater. Chem., 2012, 22, 14864.
    94. I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism, J. Phys. Chem. C, 2007, 111, 1434.
    95. P. Zoltowski, D. M. Drazic, L. Vorkapic, The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution, J. Appl. Electrochem., 1973,3, 271.
    96. J. P. Brebet, Electrochemical Behaviour of Metallic Oxides, J. Power Sources, 1979, 4, 183.
    97. 白川英樹,從導電性高分子中看到什麼?,三田出版社,1990。
    98. I. György, A New Era in Electrochemistry. Monographs in Electrochemistry. Springer. , 2008, 1–6. ISBN 978-3-540-75929-4.
    99. Yu. L. Kuo, C. C. Wu, W. S. Chang, C. R. Yang, H. L. Chou, Electrochimica Acta, 2015, 176, 1324-1331.
    100. T.T. Tung, T. Y. Kim, H. W. Lee, E. Kim, T. H. Lee, K. S. Suh, Journal of The Electrochemical Society, 2009, 156, 12, K218-K222.
    101. Y. Xuan , M. Sandberg , M. Berggren, X. Crispin, Organic Electronics, 2012, 13, 632-637.
    102. D. H. Yoon, S. H. Yoon, K. S. Ryu, Y. J. Park, Scientific Reports, 2016.
    103. F. Wua, J. Liua, L. Lia, X. Zhanga, R. Luoa, Y. Yea, R. Chen, ACS Appl. Mater. Interfaces, 2016.
    104. Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, Journal of Materials Chemistry A, 2013.
    105. I. H. Ko, S. J. Kim, J. Lim, S. H. Yu, J. Ahn, J. K. Lee, Y. E. Sung, Electrochimica Acta, 2016, 187, 340-347.
    106. 呂明修,α相二氧化錳觸媒於高充放電效率鋅空氣電池陰極之研究,國立臺灣科技大學碩士論文,2014。
    107. 葉祐任,層狀過量鋰陰極材料之合成及其表面修飾對電池性能增進機制之研究,國立臺灣科技大學碩士論文,2016。
    108. I. D. Raistrick, D. R. Franceschetti, J. R. Macdonald, The Electrical Analogs of Physical and Chemical Processes in Impedance Spectroscopy Theory, Experiment and Aplications, JohnWiley & Sons, New Jersey, 2005.

    無法下載圖示 全文公開日期 2022/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE