簡易檢索 / 詳目顯示

研究生: 郭育秀
Yu-Hsiu Kuo
論文名稱: 製備用於骨再生之生物可降解性奈米顆粒
The preparation of biodegradable nanoparticlesfor bone regeneration
指導教授: 何明樺
Ming-Hua Ho
口試委員: 李伯訓
none
洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 151
中文關鍵詞: 控制釋放奈米顆粒骨再生乳化法生物可降解性
外文關鍵詞: controlled release, Lovastatin, emulsion
相關次數: 點閱:295下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的主要目的為製備生物可降解性奈米載體,並以所開發之載體包覆能促進骨再生之藥物,在本研究中首先探討製備過程中的變數對於顆粒尺寸的影響,接著再利用最適化條件嘗試包覆三種不同的藥物,分別為:(1)用來模擬第一型纖維母細胞生長因子(FGF-1)包覆情形的牛血清蛋白(BSA),(2)能促進骨母細胞活性的Lovastatin及(3)能夠抑制蝕骨細胞活性的Alendronate。

在適當的製備條件下,可以控制顆粒的直徑於200nm左右,由穿透式電子顯微鏡(TEM)及掃描式電子顯微鏡(SEM)的照片中顯示,所製備出的顆粒為均一大小之圓球狀,且經由MTT測驗證實,本研究中所製備出的顆粒不具毒性,對細胞的活性不會產生影響。因此本研究中所製備出的顆粒適合用於藥物釋放之領域。

研究中所製備出含有BSA的PLGA顆粒,具有60.65%的包覆效率,顆粒大小為209nm,能在2個月內具有穩定的釋放效果,而在添加制酸劑後,能夠有效地減緩系統的酸化現象,延長其釋放時間。利用包覆具有螢光訊號的BSA之PLGA奈米顆粒來觀察類骨母細胞(UMR-106)之攝入情況,則發現在培養24小時左右,細胞中的螢光訊號分佈地十分明顯。而在適當的條件下,可製備出196nm且具有78.45% Lovastain包覆率的PLGA顆粒,所包覆的Lovastatin會在PBS釋放系統中,7天後釋放完畢,而包覆Lovastain的PLGA顆粒能在細胞培養初期有效地促進鹼性磷酸酶(ALPase)的表現。由於Alendronate為親水性且分子量小的藥物,使包覆Alendronate的PLGA顆粒在釋放初期有劇烈的突發性釋放,而在細胞實驗部份,利用包覆Alendronate的PLGA顆粒在細胞培養初期能略為促進細胞鹼性磷酸酶(ALPase)的表現。

本研究中所製備出的顆粒尺寸均在200nm左右,並具有良好的包覆效果,能夠達到穩定的釋放情形,未來應能應用於治療骨質疏鬆、促進骨再生的領域當中。


The purpose of this work was to prepare the biodegradable PLGA nano-particle encapsulating the drug which can promote the bone regeneration. Firstly, we have investigated the effect of emulsion times and polymer molecular weight on the size of nano-particles and encapsulation efficiency. After finding optimal conditions, three different drugs for bone regeneration were encapsulated, including BSA (Bovine Serum Albumin), Lovastatin and Alendronate. The encapsulation efficiency, releasing profile and cell responses were then investigated. The isoelectric point (pI) of BSA is similar to Fibroblast Growth Factor-1(FGF-1), so BSA was used to simulate the situation for growth factor encapsulation.

The size of the particles could be controlled by changing the emulsion time in preparing process. From the TEM (Transmission Electron Microscope) and SEM (Scanning Electron Microscope) pictures, it showed that the particles were uniform and smooth spheres. The particles have been also proved to be biocompatible by the MTT assay.

With optimized conditions, the encapsulation efficiency of PLGA nano-particles was 60.65% for BSA, 78.45% for lovastatin and 77.39% for Alendronate. All the particle size would be around 200 nm in diameter, which is suitable for the drug delivery system. In order to retard the decrease in pH due to the PLGA degradation, CaCO3 and NaHCO3 were used as neutralizer agent in this study. The experimental results suggested that the self-catalyzed degradation would be suppressed by the addition of neutralizer agents; that is to say, the long-term release would be thus reached.

The release of BSA from nano-particles is stable for 2 months in a controlled buffer system. According to the observation of fluorescent BSA in the in vitro system, the nano-particles prepared in this research would be untaken into osteoblastic-like cells (UMR-106) before 6 hours. The Lovastatin encapsulated in PLGA particles would be released in 7days, which would effectively promote the expression of ALPase.On the other hand, an acute burst release was observed for the particles with Alendronate. It is possibly due to that Alendronate is hydrophilic and with small molecular weight, resulting an easy diffusion from particles.

This research has demonstrated the particles prepared by emulsion method were uniform, biocompatible and also with high encapsulation efficiency for BSA, Lovastatin and Alendronate. It could be applicative for bone regeneration field.

目 錄 摘 要 I Abstract III 誌 謝 V 目 錄 VII 圖 目 錄 XII 表 目 錄 XV 縮寫與符號說明 XVI 中英文對照表 XVII 第一章 序論 1 第二章 文獻回顧 3 2-1 藥物釋放系統 3 2-1.1 速率控制(rate-controlled) 5 2-1.2 位置控制(target-controlled) 6 2-2 生物可降解性之高分子藥物載體 7 2-3 聚乳酸-甘醇酸共聚合物做藥物載體的應用 8 2-3.1 PLGA的降解機制 9 2-3.2 影響PLGA降解速率的因素 11 2-3.2.1 高分子物性的影響 11 2-3.2.2 載體大小的影響 12 2-3.2.3 降解時的副作用 13 2-4 高分子奈米顆粒的應用及其製備方式 15 2-4.1高分子奈米顆粒的應用 15 2-4.2 高分子奈米顆粒的製備方式 16 2-4.2.1 凝聚法(coacervation) 16 2-4.2.2 鹽析法(salting out) 17 2-4.2.3 超臨界流體技術(supercritical fluid technique) 17 2-4.2.4 乳化法(emulsion) 18 2-5 雙重乳化法(double emulsion) 21 2-5.1 雙重乳化法的機制 21 2-5.2 雙重乳化法中的變數影響 23 2-5.2.1 乳化劑 23 2-5.2.2 高分子變因 24 2-5.2.3 有機相的選擇 25 2-6 骨組織工程 26 2-6.1 骨骼 27 2-6.2 骨重塑作用(bone remodeling) 28 2-6.3 骨生長因子 31 2-7 藥物治療 35 2-7.1 Statins的發展及應用 36 2-7.2 雙磷酸鹽類(Biophosphonate)的作用機制及應用 38 第三章 實驗材料與方法 41 3-1 實驗藥品 41 3-2 實驗儀器 42 3-3 實驗流程 44 3-4 實驗步驟 45 3-4.1 最適化條件探討 45 3-4.2 牛血清蛋白(BSA)的包埋 45 3-4.2.1 PLGA-BSA顆粒製備 45 3-4.2.2 牛血清蛋白(BSA)包覆率計算 46 3-4.2.3 牛血清蛋白(BSA)控制釋放 48 3-4.2.4 制酸劑包覆及pH量測 48 3-4.3 Lovastatin的包埋 49 3-4.3.1 PLGA-Lovastatin 顆粒製備 49 3-4.3.2 Lovastatin的檢量線製備及包覆率的計算 49 3-4.3.3 Lovastatin控制釋放 50 3-4.4 Alendronate 的包埋 51 3-4.4.1 PLGA-Alendronate顆粒製造 51 3-4.4.2 Alendronate檢量線製備及包覆率的計算 52 3-4.4.3 Alendronate控制釋放 53 3-4.5 細胞吸收觀察(cell uptake) 53 3-4.6 生物相容性測試(MTT assay) 54 3-4.7 鹼性磷酸酶測試(Alkaline phosphatase test) 55 3-4.8 顆粒的型態觀察 57 第四章 結果與討論 59 4-1 最適化條件的探討 60 4-1.1 能量對顆粒大小的影響 60 4-1.2 PLGA分子量對顆粒的影響 66 4-2 顆粒性質 68 4-2.1 顆粒型態 68 4-2.2 生物相容性 70 4-3 BSA的包埋 71 4-3.1 PLGA分子量對BSA包覆量的影響 71 4-3.2 包覆BSA的PLGA顆粒對於系統pH之影響 73 4-3.3 制酸劑的添加 75 4-3.4 細胞吸收之觀察 81 4-4 Lovastatin 85 4-4.1 顆粒製備 86 4-4.2 Lovastatin檢量線製備 86 4-4.3 Lovastatin 包覆量計算 91 4-4.4 Lovastatin控制釋放 92 4-4.5 細胞對PLGA-Lovastatin顆粒之反應 95 4-5 Alendronate 100 4-5.1 顆粒製備及包覆量計算 100 4-5.2 Alendronate控制釋放 101 4-5.3 細胞對PLGA-Alendronate顆粒之反應 102 第五章 結 論 105 參考文獻 107 附錄一 ALPase檢量線 123 附錄二 Alendronate檢量線 125

參考文獻

Agrawal CM, Athanasiou KA, Technique to control pH in vicinity biodegradading PLA-PGA implants, J Biomed Mater Res, 1997; 38: 105-114

Alex R and Bodmeier R, Encapsulation of water-soluble drugs by modified solvent evaporation method. I. Effect on process and formulation variables on drug entrapment, J. Microencapsulation., 1990; 7: 347-355.

Alexis F, Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly [(lactic acid)-co-(glycolic acid)], Polym. Int., 2005; 54: 36-46

Allemann E, Leroux JC, Gurnay R and Doelker E, Invitro extended-release properties of drug-loaded poly (D,L-lactic) acid nanoparticles produced by a salting-out procedure, Pharm. Res., 1993; 10: 1732-1737

Anderson JM and Shive MS, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Delivery Rev., 1997; 28: 5-24

Arshady (a) R, Microsheres and microcapsules, a survey of manufacturing techniques: Part II: a survey of manufacturing techniques, Polym. Eng. Sci., 1990; 30: 915-924
Arshady (b) R, Microsheres and microcapsules, a survey of manufacturing techniques: Part III: solvent evaporation, Polym. Eng. Sci., 1990; 30: 915-924

Athanasiou KA, Niederauer GG and Agrawal CM, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers, Biomaterials, 1996; 17: 93-102.

Babensee JE,McIntire LV, Mikos AG, Growth factor delivery for tissue engineering, Pharm. Res., 2000; 17: 497-504

Bergsma JE, de Bruijn WC,Rozema FR, Bos RRM and Boering G, Late degradation tissue response to poly(L-lactide) bone plates and screws, Biomaterials, 1995; 16: 25-31.

Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, and Rodan G , Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase, Arch. Biochem. Biophys, 2000; 373 : 231- 241.

Bilati U, Allemann E and Doelker E, Sonication parameters for the preparation of biodegradable Nanocapsules of controlled size by double emulsion method, Pharm. Dev. Tech., 2003; 8: 1-9

Bilati U, Allemann E and Doelker E, Poly (DL-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method – processing and formulation issues for enhanced entrapment efficiency, J. Microencapsulation., 2005; 22: 205-214
Blanco MD and Alonso MJ, Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres, Eur. J. Pharm. Biopharm., 1997: 43:287-294

Boanini E, Torricelli P, Gazzano M, Giardino R and Bigi A, Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells, Biomaterials, 2008; 29: 790-796

Boury F, Marchais H, Proust JE and Benoit JP, Bovine serum albumin release from poly(a-hydroxy acid) microspheres: effects of polymer molecular weight and surface properties, J. Controlled Release, 1997; 45: 75-86

Brunner A, Mader K and Gopferich A, pH and osmotic pressure inside biodegradable microspheres during erosion, Pharm. Res., 1999; 16: 847-853

Chung T-W, Huang Y-Y, Tsai Y-L and Liu Y-Z, Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion-solvent evaporation process, J. Microencapsulation., 2002;19: 463-471

Cohen-Sela E, Rosenzweig O, Gao J, Epstin H, Gati I, Reich R, Danenberg HD and Golomb G, Alendronate-loaded nanoparticles deplete monocytes and attenuate retenosis, J. Controlled Release, 2006; 113: 23-30.

Cohen S, Yoshioka T, Lucarelli M, Hwang LH and Langer R, Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres, Pharm. Res., 1991; 8: 713-720

Cutright DE, Beasley JD and Perez B, Histologic comparison of polylactic and polyglycolic acid sutures, J. Oral Surgery, 1971; 32: 165-173
Davda J and Labhasetwar V, Characterization of naniparticle uptake by endothelial cells, Int. J. Pharm., 2002; 233: 51-59.

Desai MP, Labhasetwar V, Walter E, Levy RJ and Amidon GL, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharm. Res., 1997; 14: 1568-1573

Dunne M, Corrigan OI and Ramtoola Z, Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles, Biomaterials, 2000; 21: 1659-1668

Dunstan CR, Boyce R, Boyce BF, Garrett IR, Izbicka E, Burgess WH, Mundy GR, Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats, J.of Bone and Mineral Res., 1999; 14: 953-959

Erturk S, Onal A and Cetin SM, Analytical methods for the quantitative determination of 3-hydroxy-3-mthylglutaryl coenzyme A reductase inhibitors in biological samples, J Chromatogr B, 2003; 793: 193-205.

Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP and Langer R, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo, PNAS, 2006 ;103: 6315-6320

Foster KA, Yazdanian M and Audus KL, Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium, J. Pharm. Pharmacol., 2001; 53: 57-66

Fu K, Pack DW, Klibanov AM and Langer R, Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid)(PLGA) microspheres, Pharm. Res., 2000; 17: 100-106

Garrett IR, Gutierrez GE, Rossini G, Nyman J, McCluskey B, Flores A and Mundy GR, Locally delivered nanoparticles enhance fracture healing in rats, J. Orthopaedic Res., 2007; 25: 1351-1357

Garti N, Double emulsions-scope, limitations and new achievements, Colloids Surf. A, 1997; 123: 233-246

Gopferich A, Mechanisms of polymer degradation and erosion, Biomaterials, 1996; 17: 103-114.

Grizzi I, Garreau H, Li S and Vert M, Hydrolytic degradation of devicea based on poly(DL-lactide acid) size dependence, Biomaterials, 1995; 16: 305-311.

Graves RA, Pamujula S, Moiseyev R, Freeman T, Bostanian LA, Mandal TK, Effect of different ratio of high and low molecular weight PLGA blend on the characteristics of pentamidine microcapsules, Int. J. Pharm., 2004; 270: 251-262.

Guelcher SA and Hollinger JO, An Introduction to Biomaterials, Boca Raton, 2006

Ignatius AA and Claes LE, In vitro biocompatibility of bioresorbable polymers : poly(L,DL-lactide) and poly (L-lactide-co-glycolide), Biomaterials ,1996 ; 7: 631-639

Jain RA, The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices, Biomaterials, 2000 ; 21: 2475-2490

Joshi A, Himmelstein KJ, Dynamics of controlled release from bioerodible matrics, J. Controlled Release, 1991; 15: 95-104.

Kim K, Fisher JP, Nanoparticle technology in bone tissue engineering, J of Drug Targeting, 2007; 15: 241-252.

Kofron MD, Laurencin CT, Bone tissue engineering by gene delivery, Adv. Drug Delivery Rev, 2006; 58: 555-576

Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M and Maincent P, Influences of process parameters on nanoparticle preparation performed by double emulsion pressure homogenization technique, Int. J. Pharm., 2000; 196: 177-182

Leo E, Pecquet S, Rojas J, Couverur P, Fattal E, Changing the pH of external aqueous phase may modulate protein entrapment and delivery from polylactide-co-glycolide microsphere prepared by w/o/w solvent evaporation method, J. of Microencapsulation., 1998; 15: 421-430

Licata AA, Discovery, clinical development, and therapeutic uses of bisphosphonates, The Annals of Pharmacotherapy, 2005; 39: 668-677

Lu L, Peter SJ, Lyman MD, Lai H-L, Leite SM, Tamada JA, Uyama S, Vacanti JP, Langer R and Mikos AG, In vitro and in vivo degradation of porous poly(DL-lactide-co-glycolide) foams, Biomaterials, 2000; 21: 1837-1845.

Lu L, Yaszemski MJ, Mikos AG, TGF-1 from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function, J. Bone & surgery, 2001; 83: 82-91.

Moghimi SM, Hunter AC and JC Murray, Long-circulation and target specific nanoparticles: theory to practice, Pharmacological Rev., 2001; 53: 283-318

Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M and Gutierrez G, Stimulation of bone formation in vitro and in rodents by statins, Science, 1999; 286:1946-1949
Nafea EH, El-Massik MA, El-Khordagui LK, Marei MK and Khalafallah NM, Alendronate PLGA microspheres with high loading efficiency for dental applications, J. of Microencapsulation., 2007; 24: 525-538

Nihant N, Schugens C, Grandfils C, Jerome R and Teyssie P, Polylactide microparticles prepared by double emulsion / evaporation technique. I. Effect of primary emulsion stability, Pharm. Res., 1994; 11: 1479-1484

Niskikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugai N, Yamamoto M and Nagata N, Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures, Bone, 1996; 18: 9–14

Ogawa Y, Yamamoto M, Okada H, Yashiki T and Shimamoto T, A new technique to efficiency entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid, Chem. Pharm. Bull., 1988; 36: 1095-1103

Ostovic D, Stelmach C and Hulshizer B, Formation of chromophoric complex between alendronate and copper (II) ions, Pharm. Res., 1993; 10: 470-472

Panyam J, Zhou W-Z, Prabha S, Sahoo SK and Labhasetwar V, Rapid endo-lysosomal escape of poly (D,L-lactide-co-glycolide) nanoparticles:implications for drug and gene delivery, FASEB, 2002; 16: 1218-1226

Panyam J, Sahoo S.K., Prabha S, Bargar T and Labhasetwar V, Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles, Int. J. Pharm., 2003; 262: 1-11.

Parfitt AM, The cellular basis of bone remodeling: The quantum concept reexamined in light of recent advances in the cell biology of bone, Calcif Tissue Int., 1984; 36: S37-S45

Park TG, Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight, J. Controlled Release, 1994; 30: 161-173

Pitt CG, Cha Y, Shah SS and Zhu KJ, Blends of PVA and PGLA: control of permeability and degradability of hydrogels by blending, J. Controlled Release, 1992; 19: 189-200

Prabha S, Zhou W-Z, Panyam J and Labhasetwar V, Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles, Int. J. Pharm., 2002; 244: 105-115

Prabha S and Labhasetwar V, Critical determinants in PLGA/PLA nanoparticle-mediated gene expression, Pharm. Res., 2004; 21: 354-364

Qaddoumi MG, Ueda H, Yang J, Danda J, Labhasetwar V and Lee V.HL, The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers, Pharm. Res., 2004; 21: 641-648

Rainer A and Roland B, Encapsulation of water-soluble drugs by modified solvent evaporation method. I. Effect on process and formulation variables on drug entrapment, J. Microencapsulation., 1990; 7: 347-355.

Rizkalla N, Range C, LacasseF-X and Hildgen P, Effect of various formulation parameters on the properties of polymeric nanoparticles prepared by multiple emulsion method, J. Microencapsulation., 2006; 23: 39-57

Robinson JR and Lee VH, Controlled Drug delivery: fundamentals and Applications.p.1-61, New York: Marcel Dekker, 1987.

Carmona RH,Bone Health and Osteoporosis: A Report of the Surgeon General, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES,
http://www.surgeongeneral.gov/library

Rodan GA, Mechanisms of action of bisphosphonates, J. Clin. Invest, 1996; 97: 2692-2696

Rosca ID, Watari F and Uo M, Microparticle formation and its mechanism in single and double emulsion solvent evaporation, J. Controlled Release, 2004; 99: 271-280

Russell RG, Croucher PI and Rogers MJ, Bisphosphonates: pharmacology, mechanisms of action and clinical uses, Osteoporos Int., 1999; S9: S66-S80

Sah HK, Toddywalas R and Chien YW, Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release, J. of Microencapsulation., 1995; 12: 59-69

Sahoo SK, Panyam J, Prabha S and Labhasetwar V, Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanooparticles affects their physical properties and cellular uptake, J. Controlled Release., 2002; 82: 105-114.

Samdancioglu S, Calis S, Sumnu M and Hincal AA, Formulation and in vitro evaluation of bisphosphonate loaded microspheres for implantation in osteolysis, Drug Dev. Ind. Pharm, 2006; 32: 473-481

Scholes PD, Coombes AGA, Illum L, Davis SS, Vert M, Davies MC, The preparation of sub-200nm poly(lactide-co-glycolide) microparticles for site-specific drug delivery, J. Controlled Release., 1993; 25: 145-153

Schramm L.L. “Emulsions, Foams, and Suspensions : Fundamentals and Applications.”, 2005, WILEY-VCH

Sharif S and O’Hagan DT, A comparison of alternative methods for the determination of the levels of proteins entrapped in poly(lactide-co-glycolide) microparticles, Int. J. Pharm., 1995; 115: 259-263

Shenderova A, Burke TG and Schwendeman SP, The acid microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins, Pharm. Res., 1999; 16: 241-248

Siepmann J, Faisant N, Akiki J, Richard J and Benoit JP, Effect of the size of biodegradable microparticles on drug release: experiment and theory, J. Controlled Release. , 2004; 96: 123-134

Sikavitsas VA, Temenoff JS and Mikos AG, Biomaterials and bone mechanotransduction, Biomaterials, 2001; 22: 2581-2593

Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ and Levy RJ, Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery, J. Controlled Release, 1997; 43: 197-212.

Soppimath KS, Aminabhavi TM, Kulkarni AR and Rudzinski WE, Biodegradable polymeric nanoparticles as drug delivery devices, J. Controlled Release, 2001; 70: 1-20

Srinvasan C, Katare YK, Muthukumaran T and Panda AK, Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles, J Microencapsulation., 2005; 22: 127-138

Stein G.S., Lian J, Stein JL, vanWijnen AJ, Frenkel B, Montecino M, Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian JP, Raisz LG, & Rodan GA (eds), Principles of bone biology, Academic Press, San Diego, 1996, 69-86
Suresh G, Manjunath K, Venkateswarlu V and Satyanarayana V, Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles, AAPS Pharm Sci Tech , 2007; 8: E1-E9

Taylor MS, Daniels AU, Andriano KP and Heller J, Six bioabsorbable polymers : in vitro acute toxicity of accumulated degradation products, J. Appl. Biomater., 1996; 5: 151-157

Theeuwes F and Yum S, Principles of the design and operation of generic osmotic pumps for the drug delivery of semisolid or liquid drug formation, Ann Biomed Eng., 1976; 4: 343-353

Uchida T, Yagi A, Oda Y, Nakada Y and Goto S, Instablity of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres, Chem. Pharm. Bull.,1996; 44: 236-236

Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA and Glant TT, The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts, J Bone & Joint Surgery, 2001; 83: 201-211

Vert M, Li S and Garreau H, More about the degradation of LA/GA-derived matrices in aqueous media, J. Controlled Release, 1991; 16: 15-26.
Walstra P, Principles of emulsion formation, Chem. Eng. Sci., 1993; 48: 333-349

Wang EA, Israel DI, Kelly S and Luxenberg DP, Bone morphogenetic protein-2 causes commitment and differentiation of C3H10T1/2 and 3T3 cells, Growth factors, 1993; 9: 57-71

Whang (a) K, Grageda E, Khan A, McDonald J, Lawton M and Satsangi N, A novel osteotropic biomaterial OG-PLG: in vitro efficacy, J Biomed Mater Res Part A, 2005; 74A: 247-253.

Whang (b) K, McDonald J, Khan A and Satsangi N, A novel osteotropic biomaterial OG-PLG: synthesis and in vitro release, J Biomed Mater Res Part A, 2005; 74A: 237-246.

Wu Y, Zhao J, Henion J, Korfmacher WA, Lapiguera AP and Lin C-C, Microsample determination of lovastatin and its hydroxyl acid metabolite in mouse and rat plasma by liquid chromatography/ ionspray tandem mass spectrometry, J. Mass Spectrom., 1997; 32: 379-387

Yan C, Resau JH, Hewetson J, West M, Rill WL and Kende M, Characterization and morphological analysis of protein-loaded poly(lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique, J. Controlled Release, 1994; 32: 231-241.

Yi F, Wu H and Jia GL, Formulation and characterization of poly (DL-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery, J. Clin Pharm Therap , 2006; 31: 43-48

Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P and Vigneron C, Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method, J. Controlled Release., 1998; 50: 31-40

Zhu G (a), Mallery SR and Schwendeman SP, Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide), Nat. Biotechnol., 2000; 18: 52-56

Zhu G (b) and Schwendeman SP, Stabilization of protein encapsulated in cylindrical poly(lactide-co-glycolide) implants : mechanism of stabilization by basic additives, Pharm. Res., 2000; 17: 351-357

Zweers MLT, Engbers GHM, Grijpma DW and Feijen J, In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide), J. Controlled Release., 2004; 100: 347-356

吳弦聰、李明哲、林河木,「超臨界抗溶濟法製備奈米級晶體微粒」,化工技術,第11卷,第122-133頁 (2003)

蔡政舟、李明哲、林河木,「超臨界流體於製藥工業之應用」,化工技術,
第15卷,第172-181頁 (2007)

骨質疏鬆症照護網, http://www.bonecare.com.tw/

無法下載圖示 全文公開日期 2013/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE