簡易檢索 / 詳目顯示

研究生: 謝譯玶
Yi-Ping Hsieh
論文名稱: 使用多變形變壓器和二對二變壓器耦合傳輸線設計的正交壓控震盪器
Design of QVCOs Using Twisted Transformer and 2:2 Transformer-coupled Transmission Line
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
莊敏宏
Miin-Horng Juang
李後璋
Ho-Chang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 120
中文關鍵詞: 正交壓控振盪器變壓器耦合
外文關鍵詞: Quadrature voltage-controlled oscillator, transformer-coupled
相關次數: 點閱:264下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,高頻訊號處理的需求日益增加,尤其在VCO和ILFD這兩個關鍵電路中。然而,這些電路的能量消耗相當高,特別是電感這樣的被動元件在性能方面的要求也越來越高。因此,本論文提出了兩種ILFD設計和一個電感性能比較的設計,並使用了tsmc 0.18-μm CMOS mixed-signal and RF 1P6M technology製程進行實現。研究的目標是達到更寬廣的低功耗、低雜訊、工作範圍和多功能特性。
    第一部分介紹了一種CMOS的雙/四/八相位壓控振盪器(VCO)。該VCO使用由四個背對背連接的變壓器組成的耦合傳輸線。在TSMC 0.18 μm CMOS工藝中,VCO的晶片面積為1.2×1.2 mm2。測得的VCO振盪頻率為3.656 GHz。該VCO是一個旋轉傳播波的振盪器,可以抑制磁場輻射和噪音干擾。
    第二部分介紹了一個差動CMOS正交壓控振盪器(QVCO)。該QVCO使用了變壓器耦合的傳輸線。在TSMC 0.18 μm CMOS製程下,該QVCO的晶片面積為1.2×1.2 mm2。在3.682 GHz的測量頻率下,該VCO的相位雜訊為-108.34 dBc/Hz,而QVCO的性能指標為-182.16 dBc/Hz。。
    第三部分介紹了一種用於形成由四個背對背連接的變壓器組成的八字形變壓器耦合傳輸線的3:1 八字形變壓器。堆疊的變壓器形成一個封閉的迴路。通過將交叉耦合的反相器對放置在迴路上,建立了一個VCO。在TSMC 0.18μm CMOS製程下,該VCO的晶片面積為1.2×1.2mm2。在5.43 GHz的測量頻率下,八/四相位VCO的相位雜訊為-114.82 dBc/Hz,VCO的性能指標(FOM)為-180.128 dBc/Hz。迴路上的波是一個行波。八字形變壓器減少了磁場耦合並限制了電磁兼容性(EMC)問題。
    第四部分介紹了一個差動的CMOS正交壓控振盪器(QVCO),同時也被用作八相位振盪器。QVCO使用了由四個背對背連接的變壓器組成的變壓器耦合傳輸線。在TSMC 0.18 μm CMOS製程下,QVCO的晶片面積是1.2×1.2 mm2。在3.8 GHz的測量頻率下,八/四相位VCO的相位雜訊為-124.243 dBc/Hz,QVCO的性能指標(FOM)為-185.036 dBc/Hz。
    第五部分介紹了一個CMOS四相壓控震盪器(VCO)。為了在低電壓下操作,我們使用了一個汲極到源極的變壓器回授電路,將源極電壓擺幅到零伏特以下。四相壓控震盪器(QVCO)使用了兩個LC震盪器,通過交叉耦合的變壓器進行耦合。在TSMC 0.18μm BiCMOS製程下,QVCO的晶片面積為1.2×9.63平方毫米。測得QVCO的振盪頻率為4.49 GHz。FOM為-187.032 dBc/Hz。由於使用了八字型變壓器,QVCO抑制了磁場輻射和雜訊干擾。


    With the development of science and technology, the demand for high frequency is increasing day by day, and the circuit processing high-frequency signal is more important, among which the VCO and injection-locked frequency divider (ILFD) are particularly important. Their power consumption is particularly large, and inductors are indispensable passive components, so the performance requirements are more stringent, such as wider operating range, low noise, low power, or multi-functional features, this thesis proposes two ILFDs and an inductor performance comparison design. All chips are manufactured using tsmc 0.18-μm CMOS mixed-signal and RF 1P6M technology process.
    The first part presents a CMOS two/four/eight phase voltage-controlled oscillator (VCO). The VCO uses a transformer-coupled transmission line consisting of four back-to-back connected transformers. The die area of the VCO in the TSMC 0.18 μm CMOS process is 1.2×1.2 mm2. The measured oscillation frequency of the VCO at 3.656 GHz. The VCO is a rotary traveling wave oscillator that suppresses magnetic field radiation and noise interference.
    The second part presents a differential CMOS quadrature voltage-controlled oscillator (QVCO). The QVCO uses a transformer-coupled transmission line. The die area of the QVCO in the TSMC 0.18 μm CMOS process is 1.2×1.2 mm2. The measured phase noise of the VCO at 3.682 GHz is -108.34 dBc/Hz and the QVCO figure of merit is -182.16 dBc/Hz.
    The third part presents a 3:1 8-shaped transformer used to form an 8-shaped transformer-coupled transmission line consisting of four back-to-back connected transformers. The stacked transformers form a closed loop. By placing cross-coupled inverter pairs in the loop, a VCO is built. The die area of the VCO in the TSMC 0.18 μm CMOS process is 1.2×1.2 mm2. The measured phase noise of the eight/four-phase VCO at 5.43 GHz is -114.82 dBc/Hz and the VCO figure of merit (FOM) is -180.128 dBc/Hz. The wave on the loop is a traveling wave. The 8-shaped transformer reduces magnetic field coupling and limits the Electro-Magnetic Compatibility (EMC) issue.
    The fourth part presents a differential CMOS quadrature voltage-controlled oscillator (QVCO), which is also used as an eight-phase oscillator. The QVCO uses a transformer-coupled transmission line consisting of four back-to-back connected transformers. The die area of the QVCO in the TSMC 0.18 μm CMOS process is 1.2×1.2 mm2. The measured phase noise of the eight/four-phase VCO at 3.8 GHz is -124.243 dBc/Hz and the QVCO figure of merit (FOM) is -185.036 dBc/Hz.
    The last part presents a CMOS four phase voltage-controlled oscillator (VCO). A drain-to-source transformer-feedback topology for low supply voltage operation swings the source voltage to below ground level. The quadrature voltage-controlled oscillator (QVCO) uses two LC VCOs coupled by cross-coupled transformers. The die area of the QVCO in the TSMC 0.18 μm BiCMOS process is 1.2× 9.63 mm2. The measured oscillation frequency of the QVCO at 4.49 GHz. The FOM is -187.032 dBc/Hz. The QVCO suppresses the magnetic field radiation and noise interference due to the use of 8-shaped transformers.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 The theory of the Voltage Controlled Oscillators 6 2.1 Introduction 6 2.2 Oscillation Theory 7 2.2.1 Resonator and Negative Resistance (One port) 8 2.3 Brief description of oscillator types 14 2.3.1 LC-Tank Oscillator 14 2.3.2 Ring Oscillator 20 2.4 Overview of Passive Components 25 2.4.1 Resistors 27 2.4.2 Inductor 29 2.4.3 Capacitor 40 2.5 Principles Underlying Voltage-Controlled Oscillator Design 41 2.5.1 Parameters of Voltage-Controlled Oscillator 42 2.5.2 Phase Noise 44 2.5.3 Quality Factor 52 Chapter 3 Operation and Implementation of Voltage-Controlled-Oscillator Using Cascaded Transformer Transmission Line 56 3.1 Introduction 56 3.2 Circuit design 59 3.1 Measurement and Discussion 62 Chapter 4 Quadrature Voltage-Controlled-Oscillator Using Transformer-couple Transmission Line 65 4.1 Introduction 65 4.2 Circuit design 67 4.3 Measurement and Discussion 69 Chapter 5 Voltage-Controlled-Oscillator Using 2:2 Transformer-coupled Transmission Line 74 5.1 Introduction 74 5.2 Circuit Design 77 5.3 Measurement and Discussion 80 Chapter 6 Voltage-Controlled-Oscillator Using 8-shaped Transformer-coupled Transmission Line 88 6.1 Introduction 88 6.2 Circuit design 90 6.3 Measurement and Discussion 96 Chapter 7 Quadrature Voltage-Controlled-Oscillator Using Twisted Transformer 102 7.1 Introduction 102 7.2 Circuit design 104 7.3 Measurement Results and Discussion 109 Chapter 8 Conclusions 115

    [1] S.-L. Jang, S.-S. Lin, C.-W. Chang and S.-H. Hsu, ” A complementary cross-coupled quadrature VCO using ring inductor coupling method,” Microw. Opt. Technol. Lett., pp.839-842, April, 2012.
    [2] S.-L. Jang, Hsi-Han Lin and Ching-Wen Hsue,” Mode-Switching Left-Handed Standing Wave Voltage-Controlled Oscillator,”Microw. Opt. Technol. Lett. vol.55, 9,pp. 1977–2244, Sept.2013.
    [3] S.-L. Jang, Wei-Hao Lee, and Ching-Wen Hsue, ” Fully-Integrated Standing Wave Oscillator Using Composite Right/Left-Handed LC Network,” Microw Opt Technol Lett.., vol. 55, 5,pp.985-988, May. 2013.
    [4] W. -C. Lai, S. -L. Jang and J. -W. Syu, "Quadrature VCO Via Transformer-coupled Transmission Line," 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circu2016.2598225its (EMC Compo), 2019, pp. 2-5, doi: 10.1109/EMCCompo.2019.8919938.
    [5] W. -C. Lai, S. -L. Jang and J. -J. Wang, "Dual band quadrature VCO using switched-transformer coupling for wireless robot applications," 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2019, pp. 109-112, doi: 10.1109/ACIRS.2019.8935963.
    [6] M. Babaie and R. B. Staszewski, "An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability," IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679-692, March 2015, doi: 10.1109/JSSC.2014.2379265.
    [7] M. Babaie, A. Visweswaran, Z. He, and R. B. Staszewski, “Ultra-low phase noise 7.2–8.7 GHz clip-and-restore oscillator with 191 dBc/Hz FoM,” in Proc. IEEE Radio Frequency Integr. Circuits Symp., 2013, pp. 43–46.
    [8] K. -W. Cheng and Y. -R. Tseng, "5 GHz CMOS Quadrature VCO Using Trifilar-Transformer-Coupling Technology," IEEE Microw. Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016, doi: 10.1109/LMWC.2016.2598225.
    [9] K. Takinami, R. Walsworth, S. Osman, and S. Beccue, “Phase noise analysis in rotary traveling wave oscillators using simple physical model,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 6, pp. 1465–1474, Jun., 2010.
    [10] S. Abbasalizadeh and H. Miar-Naimi,“A phase tunable rotary traveling wave oscillator: analysis and calibration,” IEEE Trans. Circuits Syst. I, vol. 65, no. 9, pp. 2917–2928, Sept. 2018.
    [11] J.-C. Chien and L.-H. Lu, “A 32-GHz rotary traveling-wave voltage controlled oscillator in CMOS,” IEEE Microw. Compon. Lett., vol. 17, no. 10, pp. 724–726, Oct. 2007.
    [12] K. T. Ansari, T. Ross, P. Gamand and C. Plett, "Frequency domain phase shift measurement technique applied to a multiphase rotary travelling-wave VCO," IEEE Microw. Compon. Lett., vol. 25, no. 12, pp. 820-822, Dec. 2015, doi: 10.1109/LMWC.2015.2495150.
    [13] M. A. Shehata, M. Keaveney and R. B. Staszewski, "A 184.6-dBc/Hz FoM 100-kHz flicker phase noise corner 30-GHz rotary traveling-wave oscillator using distributed stubs in 22-nm FD-SOI," IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 103-106, Sept. 2019, doi: 10.1109/LSSC.2019.2929326.
    [14] N. Nouri and J. F. Buckwalter, “A 45-GHz rotary-wave voltage controlled oscillator,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 383–392, Feb. 2011.
    [15] A. Moroni, R. Genesi, and D. Manstretta, “Analysis and design of a 54 GHz distributed ‘hybrid’ wave oscillator array with quadrature outputs,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1158–1172, May 2014.
    [16] M. Vigilante and P. Reynaert, “A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2927–2938, Oct. 2018.
    [17] M. Haghi Kashani, A. Tarkeshdouz, R. Molavi, A. Sheikholeslami, E. Afshari, and S. Mirabbasi, “On the design of a high-performance mmwave VCO with switchable triple-coupled transformer,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4450–4464, Nov. 2019.
    [18] . Mansour et al., "Ku-band low phase noise VCO using high-quality factor transformer in 0.18-μm CMOS technology," IEEE Microw. Compon. Lett., doi: 10.1109/LMWC.2022.3167705.
    [19] S. Ming and J. Zhou, "A 19 GHz circular-geometry quad-core tail-filtering class-F VCO with -115 dBc/Hz phase noise at 1 MHz Offset in 65-nm CMOS," ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), 2021, pp. 303-306, doi: 10.1109/ESSCIRC53450.2021.9567792.
    [20] H. -C. Lee, S. -L. Jang and R. -X. Yang, "Low power CMOS VCO using an 8-shaped transformer," 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, NV, USA, 2023, pp. 19-21, doi: 10.1109/SiRF56960.2023.10046255.
    [21] Y. Y. Peng, X. P. Yu, J. M. Gu, W. M. Lim and W. Q. Sui, "An area-efficient CRLH (Composite Right/Left-Handed)-TL approach to the design of rotary traveling-wave oscillator," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 560-562, Oct. 2013, doi: 10.1109/LMWC.2013.2252424.
    [22] F. Ben Abdeljelil, W. Tatinian, L. Carpineto and G. Jacquemod, "Design of a CMOS 12 GHz rotary travelling wave oscillator with switched capacitor tuning," 2009 IEEE Radio Frequency Integrated Circuits Symposium, 2009, pp. 579-582, doi: 10.1109/RFIC.2009.5135608.
    [23] K. T. Ansari, T. N. Ross and C. Plett, ”Ku-band high output power multiphase rotary travelling-wave VCO in SiGe BiCMOS,” Microwave Integrated Circuits Conference (EuMIC), 2013 European, Nuremberg, 2013, pp. 97-100
    [24] X. Hu, Y. Dai, H. Zhang, J. Zhou, and K. Chen, " Rotary traveling-wave oscillator design using 0.18 μm CMOS," J. Semicond. 2010, 31(6).
    [25] S. L. Jang, C. C. Shih, C. C. Liu, C. W. Chang, and C. W. Hsue, “CMOS quadrature VCOs using the varactor coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 498–500, Sep. 2011.
    [26] J. Yang, C.-Y. Kim, D.-W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173–177, Mar. 2010.
    [27] Y. Fu, L. Li, D. Wang, X. Wang, and L. He, “28-GHz CMOS VCO with capacitive splitting and transformer feedback techniques for 5G communication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 9, pp. 2088–2095, Sep. 2019.
    [28] M. Lee, C. Lee and C. Park, "Design of a 24-GHz VCO using magnetic coupling of gate-drain through a transformer," 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413207.
    [29] J.-S. Syu, C. Meng, and G.-W. Huang, "SiGe HBT quadrature VCO utilizing trifilar transformers", Solid-State Circuits Conference 2008. ASSCC '08. IEEE Asian, pp. 465-468, 2008.
    [30] S.-H. Lee, Y.-H. Chuang, S.-L. Jang, M.-T. Chuang, and R.-H. Yen,” A quadrature CMOS VCO using transformer coupling and current reuse topology,” IEICE Trans. Commun., VOL. E90-B, pp.346-348, Feb. 2007.
    [31] M. Vigilante and P. Reynaert, “Analysis and design of an E-band transformer-coupled low-noise quadrature VCO in 28-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1122–1132, Apr. 2016.
    [32] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sep. 2007.
    [33] T. Xi, S. Guo, P. Gui, D. Huang, Y. Fan, and M. Morgan, “Low-phase noise 54-GHz transformer-coupled quadrature VCO and 76-/90-GHz VCOs in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2091–2103, Jul. 2016.
    [34] J.-S. Syu, H.-L. Lu, and C. Meng, “A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 88–90, Feb. 2012.
    [35] J.-S. Syu, H.-L. Lu, and C. Meng, “A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 88–90, Feb. 2012.
    [36] Tesson O, “High quality monolithic 8-shaped inductors for silicon RF IC design,” in IEEE topic meeting on SiRF, Jan. 2008. pp. 94-97.
    [37] X. Liu and H. C. Luong, “Analysis and design of magnetically tuned W-band oscillators,” IEEE Trans. Very Large Scale Integr. Syst., vol. 30, no. 6, pp. 732–743, Jun. 2022.
    [38] P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, "A low phase noise quadrature phase oscillator with frequency pulling suppression technique," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 1145-1147, doi: 10.1109/MWSYM.2017.8058800.

    QR CODE