簡易檢索 / 詳目顯示

研究生: 林韋丞
Wei-cheng Lin
論文名稱: 缸內噴油機車引擎的實驗與計算分析
Experimental and Computational Analyses of a GDI Motorcycle Engine
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 林怡均
Yi-jun Lin
許清閔
Ching-min Hsu
孫珍理
Chen-li Sun
張家和
Chir-ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 291
中文關鍵詞: 缸內噴油機車引擎
外文關鍵詞: GDI, motorcycle engine
相關次數: 點閱:185下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用計算與實驗方法於一部四閥單缸四行程250 c.c.引擎,進行缸內噴油流場之診測。使用商業套裝計算流體動力學(computational fluid dynamics, CFD)軟體STAR-CD執行模擬計算,探討在燃油噴射的狀況下,於進氣與壓縮行程期間,缸內燃油噴射之噴霧粒徑(SMD)與油氣濃度之分佈。以Homogeneous charge操作下計算結果的SMD與濃度空間變異值來評估噴油嘴放置位置與噴射角度的恰當性。結果顯示,噴油嘴尖端安裝在進氣閥側邊距離座標原點左邊32 mm、上方4.25 mm處(座標原點置放於活塞頭處於上死點時頂部的中央位置)、噴油角度等於49°時,油氣濃度較為平均,SMD的數值也不高,所以選取此一安排為噴油嘴之安裝位置與角度。固定噴油嘴於選取之安裝位置與角度,透過Stratified charge的油氣濃度集中現象的觀察來設計活塞頭形狀。結果顯示,活塞頭形狀為偏置的凹球狀弧(#8)且噴油時機CA = 270°時,油氣濃度於汽缸頭中央最集中,火星塞可以置於該區域。實驗分為兩個部份,第一部份為分析噴油嘴之物理特性,並將所得到的噴油延遲、噴油結束延遲時間及噴油質量流率的數據套用在模擬計算中。第二部份為引擎在怠速時(節流閥開度為零,而由另一岐管進氣),量測在不同的噴油結束角度下所排放之汙染物的變化,並以Homogeneous charge計算結果的SMD和濃度空間變異值來評估油氣混合情況。結果顯示,缸內直噴引擎於噴油時機CA = 22° (結束角度CA = 47°)時之濃度分佈較為平均,且汙染物排放也最少。但相較於歧管噴油引擎之排放物 (0.16 %volCO與 162 ppmHC)來的高,原因為缸內直噴引擎的噴油嘴參數並不符合引擎適當噴油範圍,且在怠速時搭配平面活塞頭,導致污染物排放會大於歧管噴油引擎。


The distributions of droplet diameters and fuel concentration of a four-stroke motorcycle engine was studied by computational and experimental methods. The computation study employed the commercial CFD code (STAR-CD) to calculate the distributions of droplet diameters and fuel concentration. By using the results of homogeneous charge, the fuel concentration presented the most relatively uniform distributions as the tip of the fuel injector was arranged at the location 32 mm left of the origin and 4.25 mm above the origin. The origin of the coordinates were placed at the center point of the piston as the piston was pushed up to the top dead center (TDC). The injection angle was optimized to be 49o from the vertical axis. The computational results based on the stratified charge fuel injection strategy showed that piston concave crown model No. 8 provided concentrated droplet near the center of the cylinder head. The injection delay time and injected fuel mass flow rate measured by the experiments of out-of-cylinder fuel injection were engaged to the computational work for simulation of fuel injection conditions. Under the homogeneous charge operation, the pollutant emissions and fuel concentration at various ends of injection angle were measured by a gas analyzer and computational method, respectively. The results showed that the fuel concentration presented the most relatively uniform distributions and the pollutant emissions were lowest at CA = 47°.

摘 要......i Abstract......ii 誌 謝......iii 目 錄......v 符號索引......ix 表圖索引......xiii 第一章 緒 論......1 1.1 研究動機......1 1.2 文獻回顧......2 1.3 研究目的......6 第二章 實驗設備、儀器與方法......7 2.1 引擎型式與規格......7 2.2 供油系統......7 2.3 點火系統......8 2.4 電子噴射裝置系統......9 2.5 數據擷取系統......9 2.6 電子微量天秤......9 2.7 高速攝影系統......10 2.8 廢氣分析系統......10 第三章 計算模擬之模型與方法......11 3.1 標的引擎......11 3.1.1 引擎規格......11 3.1.2 活塞頭型式......11 3.1.3 噴嘴型式......11 3.2 計算流力軟體簡介......12 3.3 統御方程式......13 3.3.1 紊流模式......15 3.3.2 液滴分裂模型......17 3.3.3液滴與壁面交互作用模型......19 3.4 數值求解方法......21 3.4.1 離散化方程式......21 3.4.2 PISO解法理論......23 3.4.3 收斂標準......28 3.5 網格與條件......29 3.5.1 計算網格......29 3.5.2 邊界條件......30 3.5.3 初始條件......31 3.5.4 取像相位與座標定義......32 3.5.5 物理參數定義......32 3.5.5.1 容積效率(volumetric efficiency)......32 3.5.5.2 缸內燃油液滴平均粒徑SMD......33 3.5.5.3 空燃比......35 3.5.5.4 當量比......36 3.5.5.5 空間分佈變異值......36 第四章 冷流場噴霧與油氣濃度分佈的衍化計算結果......38 4.1 Homogeneous injection策略......38 4.2 燃油液滴缸內平均粒徑SMD變化......38 4.3 油氣濃度分佈......39 4.3.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......39 4.3.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......40 4.4 濃度空間分佈變異值......41 第五章 凹面活塞頭設計......42 5.1 Stratified injection策略......42 5.2 平面活塞頭的油氣濃度分佈......42 5.2.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......42 5.2.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......42 5.3 凹面活塞頭的油氣濃度分佈......43 5.3.1 #1凹面活塞頭的油氣濃度分佈......43 5.3.1.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......43 5.3.1.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......43 5.3.1.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......43 5.3.1.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......44 5.3.2 #2凹面活塞頭的油氣濃度分佈......44 5.3.2.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......44 5.3.2.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......44 5.3.2.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......44 5.3.2.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......45 5.3.3 #3凹面活塞頭的油氣濃度分佈......45 5.3.3.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......45 5.3.3.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......45 5.3.3.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......46 5.3.3.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......46 5.3.4 #4凹面活塞頭的油氣濃度分佈......46 5.3.4.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......46 5.3.4.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......46 5.3.4.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......47 5.3.4.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......47 5.3.5 #5凹面活塞頭的油氣濃度分佈......47 5.3.5.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......47 5.3.5.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......47 5.3.5.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......48 5.3.5.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......48 5.3.6 #6凹面活塞頭的油氣濃度分佈......48 5.3.6.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......48 5.3.6.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......49 5.3.6.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......49 5.3.6.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......49 5.3.7 #7凹面活塞頭的油氣濃度分佈......49 5.3.7.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......49 5.3.7.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......50 5.3.7.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......50 5.3.7.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......50 5.3.8 #8凹面活塞頭的油氣濃度分佈......50 5.3.8.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......51 5.3.8.2 正面非對稱面(z = -5 mm)之油氣濃度分佈衍化過程......51 5.3.8.3 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......51 5.3.8.4 側面非對稱面(x = 5 mm)之油氣濃度分佈衍化過程......51 5.4 活塞頭凹面位置與噴油時機......52 5.4.1 噴油時機CA = 250°......52 5.4.1.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......52 5.4.1.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......52 5.4.2 噴油時機CA = 260°......52 5.4.2.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......52 5.4.2.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......53 5.4.3 噴油時機CA = 280°......53 5.4.3.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......53 5.4.3.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......53 5.4.4 噴油時機CA = 290°......54 5.4.4.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......54 5.4.4.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......54 第六章 缸外噴油實驗結果......55 6.1 缸外噴油量分析......55 6.2 缸外噴油量之噴油延遲特性......56 6.2.1 缸外噴油訊號及延遲特性分析......56 6.2.2 缸外模擬引擎轉速對噴油延遲時間特性分析......60 第七章 實體引擎模型之冷流場噴霧與油氣濃度分佈......61 7.1 燃油液滴缸內平均粒徑SMD變化......61 7.2 油氣濃度分佈......61 7.2.1 噴油結束角度CAend of inj = 32°......61 7.2.1.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......61 7.2.1.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......62 7.2.2 噴油結束角度CAend of inj = 47°......63 7.2.2.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......63 7.2.2.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......63 7.2.3 噴油結束角度CAend of inj = 66°......64 7.2.3.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......64 7.2.3.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......64 7.2.4 噴油結束角度CAend of inj = 100°......65 7.2.4.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......65 7.2.4.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......65 7.2.5 噴油結束角度CAend of inj = 134°......66 7.2.5.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......66 7.2.5.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......67 7.2.6 噴油結束角度CAend of inj = 167°......67 7.2.6.1 正面對稱面(z = 0 mm)之油氣濃度分佈衍化過程......67 7.2.6.2 側面對稱面(x = 0 mm)之油氣濃度分佈衍化過程......68 7.3 濃度空間分佈變異值......68 第八章 引擎排氣實驗分析......70 8.1 排放物......70 8.2 油耗......71 第九章 結論與建議......72 9.1 結論......72 9.1.1 噴油嘴安裝位置和噴油角度對於缸內油氣濃度影響......72 9.1.2 凹面活塞頭設計......72 9.1.3 缸外噴油實驗......73 9.1.4不同噴油結束角度對於缸內油氣濃度影響......73 9.1.5 引擎排氣實驗分析......73 9.2 建議......73 參考文獻......75

[1] Mayer, H., “Air pollution in cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
[2] Takagi, Y., “The role of mixture formation in improving fuel economy and reducing emissions of automotive S.I. engines,” FISITA Technical Paper, No. P0109, 1996.
[3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988, New York.
[4] Heywood, J. B., “Fluid motion within the cylinder of internal combustion engines-The 1986 freeman scholar lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5] Han, Z., Reitz, R. D., “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 848-860, SAE 970625.
[6] Han, Z., Fan, L., and Reitz, R. D., “Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1423-1441, SAE 970884.
[7] Matsumura, E., Tomita, T., Takeda, K., Furuno, S., and Senda, J., “Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engire,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 238-245, SAE 2003-01-0060.
[8] Tanaka, Y., Takano, T., Sami, H., Sakai, K., and Osumi, N., “Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 218-235, SAE 2003-01-0059.
[9] Papageorgakis, G., Assanid, D. N., “Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, pp. 82-107, SAE 980135.
[10] Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 759-766, SAE 970539.
[11] Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., “Development of Direct Injection Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 767-776, SAE 970540.
[12] Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture Preparation for Direct-Injection SI Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 794-801, SAE 970542.
[13] Rotondi, R., Bella G.,“Gasoline direct injection spray simulation ,”
International Journal of Thermal Sciences, Vol. 45, 2006, pp. 168-179.
[14] 劉加陽, 四行程二閥內燃引擎的氣流特性, 國立台灣科技大學機械工程研究所碩士論文, 2007.
[15] 邱彥凱, 二閥單缸機車引擎的缸內直噴技術發展, 國立台灣科技大學機械工程研究所碩士論文, 2008.
[16] 林子維, 實驗與計算方法於缸內噴油引擎噴油時機之探討, 國立台灣科技大學機械工程研究所碩士論文, 2009.
[17] 黃紹軒, 使用計算流體力學方法於缸內噴油引擎之初步設計, 國立台灣科技大學機械工程研究所碩士論文, 2009.
[18] 陳家豪, 引擎缸內噴油之設計與分析, 國立台灣科技大學機械工程研究所碩士論文, 2011.
[19] 沈昆弘, 四閥四行程機車引擎瞬間流場與缸內噴油特性的計算與實驗分析, 國立台灣科技大學機械工程研究所碩士論文, 2012.
[20] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates, ” AIAA Journal, Vol. 19, No. 2, 1981, pp.240-242.
[21] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas flow simulation and visualization in cylinder of motor-cycle engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
[22] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-dynamic analysis of the intake system for a HDDI diesel engine by STAR-CD code and LDA technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
[23] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[24] Kurniawan, W. H, Abdullah, S., Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine,” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
[25] Stephen R. Turns, An Introduction to Combustion : Concepts and Applications, McGraw-Hill, 2000, pp. 236.
[26] Dodge, L. G., “Fuel preparation requirement for direct-injected spark ignition engines, ” SAE Technical Paper, No.962015.

無法下載圖示 全文公開日期 2018/06/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE