簡易檢索 / 詳目顯示

研究生: 薛如盈
Ju-Ying Hsueh
論文名稱: 雙火星塞機車引擎的氣流與燃燒分析
Analysis of Flow and Combustion of a Motorcycle Engine Installed with Dual Spark Plugs
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
none
張家和
none
孫珍理
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 219
中文關鍵詞: 雙火星塞機車引擎
外文關鍵詞: Dual Spark Plugs, Motorcycle Engine
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用計算流體動力學(Computational Fluid Dynamics, CFD)商用軟體STAR-CD於一部雙火星塞的二閥單缸四行程150 c.c.引擎,進行單火星塞與雙火星塞的燃燒計算,探討在不同當量比以及不同點火時刻下對引擎性能的影響。進一步更改雙火星塞位置,以找出最佳的雙火星塞擺放位置。結果顯示,當兩個火星塞分別擺放於離氣缸壁約四分之一缸徑時,此雙火星塞引擎的性能最佳。依據此一最佳雙火星塞擺放位置,在不同的當量比(equivalence ratio)及點火角度時,以數值方法計算,分析燃氣在氣缸內的燃燒過程、缸內平均壓力、平均溫度、已燃質量分率(burned mass fraction of fuel)、扭力與馬力,探討單火星塞與雙火星塞引擎的性能。結果顯示,在固定的當量比及點火角時,單火星塞引擎與雙火星塞引擎的火焰傳播速度數值接近,在當量比Φ = 1.0,點火角提前20度時,大約17 m/s。但是雙火星塞引擎的火焰從兩邊同時向中間傳遞,所以有比單火星塞引擎較大的已燃質量分率。雙火星塞引擎的最大缸壓、平均有效壓力、輸出扭力、馬力比單火星塞引擎大,例如,在當量比Φ = 1.0,點火角度提前20度時,雙火星塞引擎的最大缸壓、扭力與平均有效壓力分別比單火星塞引擎的大31.54 %、6.90 %與6.90 %。


    A two-valve, four-stroke, motorcycle engine installed with dual spark plugs was studied by using the commercial CFD code (STAR-CD). The performance of the single and dual spark plugs engines during combustion processes at various equivalence ratios and ignition times were calculated by the computational analysis. The locations of the dual spark plugs were varied to study the effects on the engine performance. The optimized spark plug locations were found based on the conditions that the mean effective pressure and torque of the engine attained maximum values. It was found that the optimized location for each spark plug was one-quarter bore diameter away from the rim of the cylinder head. The calculated results of engine performance based on the optimized locations of dual spark plugs showed that the dual spark plugs engine has larger burned mass fraction of fuel, maximum in-cylinder pressure, mean effective pressure, and output torque than the single spark plug engine at fixed equivalence ratio and ignition crank angle.

    摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的 第二章 計算模擬之模型與方法 2.1 標的引擎 2.1.1 引擎規格 2.1.2 火星塞位置與座標定義 2.2 計算軟體的簡介 2.3 統御方程式 2.3.1 紊流模式 2.3.2 燃燒模型 2.4 數值方法 2.4.1 離散化方程式 2.4.2 PISO解法理論 2.4.3 收斂標準 2.5 數值模擬 2.5.1 計算網格 2.5.2 邊界條件 2.5.3 初始條件 2.5.4 取像相位與曲軸角度定義 2.5.5 物理參數定義 第三章 #0單火星塞引擎性能之計算 3.1 缸內溫度於對稱面之分佈 3.2 火焰傳播速度 3.3 缸內平均壓力變化 3.4 缸內平均溫度變化 3.5 缸內已燃質量分率變化 3.6 缸內燃油完全反應結束 3.7 最大缸內平均壓力與溫度 3.8 引擎扭力、馬力輸出與平均有效壓力 第四章 #1雙火星塞引擎性能之計算 4.1 缸內溫度於對稱面之分佈 4.2 火焰傳播速度 4.3 缸內平均壓力變化 4.4 缸內平均溫度變化 4.5 缸內已燃質量分率變化 4.6 缸內燃油完全反應結束 4.7 最大缸內平均壓力與溫度 4.8 引擎扭力、馬力輸出與平均有效壓力 第五章 #2雙火星塞引擎性能之計算 5.1 最大缸內平均壓力 5.2 缸內平均壓力變化 5.3 缸內平均溫度變化 5.4 缸內已燃質量分率變化 第六章 #3雙火星塞引擎性能之計算 6.1 缸內溫度於對稱面之分佈 6.2 火焰傳播速度 6.3 缸內平均壓力變化 6.4 缸內平均溫度變化 6.5 缸內已燃質量分率變化 6.6 缸內燃油完全反應結束 6.7 最大缸內平均壓力與溫度 6.8 引擎扭力、馬力輸出與平均有效壓力 第七章 #0 ~ #3引擎性能比較 7.1 火焰傳播速度 7.2 缸內平均壓力變化 7.3 缸內平均溫度變化 7.4 缸內已燃質量分率變化 7.5 缸內燃油完全反應結束 7.6 最大缸內平均壓力與溫度 7.7 引擎扭力、馬力輸出與平均有效壓力 第八章 結論與建議 8.1 結論 8.1.1 雙火星塞安裝之最佳位置 8.1.2 單火星塞與雙火星塞引擎性能之比較 8.2 建議 參考文獻

    [1] Mayer, H., “Air pollution in cities,” Atmospheric Environment, Vol. 33, No. 24, 1999, pp. 4029-4036.
    [2] 李進修、王漢英,汽機車引擎設計與分析技術,國立清華大學出版社,2005。
    [3]

    [4] Franco, A. and Martorano, L., “Evaluations on the heat transfer in the small two stroke engines,” SAE Paper No. 980762, 1998.
    Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, NY, 1988.
    [5]
    Jasak, H., Luo, J. Y., Kaludercic, B., Gosmati, A. D., Echtle, H., Liang, Z., Wirbeleit, R., Wierse, M., Rips, S., Werner, A., Fernstrdtn, G., and Karlsson, A., “Rapid CFD simulation of internal combustion engine,” SAE Paper No. 1999-01-1185, 1999.
    [6] Shojaeefard, M. H. and Noorpoor, A. R., “Flow simulation in engine cylinder with spring mesh,” American Journal of Applied Science, Vol. 10, No. 5, 2008, pp. 1336-1343.
    [7] Coz, J. F. L., Henriot, S., and Pinchon P., “An experimental and computational analysis of the flow field in a four-valve spark ignition engine − focus on cycle-resolved turbulence,” SAE paper No. 900056, 1990..
    [8] Gharakhani, A. and Ghoniem, A. F., “3D vortex simulation of intake flow in a port-cylinder with a valve seat and a moving piston,” SAE paper No. 9961195, 1996.
    [9] Ekchian, A. and Hoult, D. P., “Flow visualization study of the intake process of an internal combustion engine,” SAE paper No. 790095, 1979.
    [10] Richter, M., Axelsson, B., Alden, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the fuel distribution and the in-cylinder flow field in a stratified charge engine using laser techniques and comparison with CFD-modelling,” SAE paper No. 1999-01-3540, 1999.
    [11] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-dynamic analysis of the intake system for a HDDI diesel engine by STAR-CD code and LDA technique,” SAE paper No. 2003-01-0002, 2003.
    [12] Papageorgakis, G. and Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” SAE paper No. 980135, 1998.
    [13] Bilgin, A. “Geometric features of the flame propagation process for an SI engine having dual-ignition system,” International Journal of Energy Research, Vol. 26, No. 11, 2002, pp. 987-1000.
    [14]
    Kuroda, H., Nakajima, Y., Sugihara, K., Takagi, Y. and Muranaka, S., “The fast burn with heavy EGR, new approach for low NOx and improved fuel economy,” SAE paper No. 780006, 1978.
    [15] Scussel, A. J. and Simko, A. O., “Wade WR. The ford PROCO engine update,” SAE paper No. 780669, 1978.
    [16] Chandra, H., “A critial study of the dual versus single plug systems in S.I. engine,” SAE paper No. 940452, 1994.
    [17] Mattavi, J. N., “The attribute of fast burning rates in engines,” SAE paper No. 800920, 1980.
    [18] Ramtilak, A., Joseph, A., Sivakumar, G. and Bhat, S. S., “Digital twin spark ignition for improved fuel economy,” SAE paper No. 2005-26-008, 2005.
    [19] Witze, P. O., “The effect of spark location on combustion in a variable swirl engine,” SAE paper No. 820044, 1982.
    [20] Bozza, A., Gimelli, A., Siano, D., Torella, E. and Mastrangelo, G., “A quasi-dimensional three-zone model for performance and combustion noise evaluation of a twin spark high-EGR engine,” SAE paper No. 2004-01-0619, 2004.
    [21] Altin, I. and Bilgin, A., “A parametric study on the performance parameters of a twin-spark SI engine,” Energy Conversion and Management, Vol. 50, No. 8, 2009, pp. 1902–1907.
    [22] Abd Alla, G. H., “Computer simulation of a four stroke spark ignition engine,” Energy Conversion and Management,Vol. 43, No. 8, 2002, pp. 1043–1061. Vol. 50, No. 8
    [23] 徐偉銘,雙火星塞機車引擎的氣流與性能:實驗與計算分析,國立台灣科技大學機械工程研究所碩士論文,台北,台灣,2013。
    [24] Warsi, Z. U. A., “Conservation form of the Navier-Stokes equations in general nonesteady coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
    [25] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M. and Noda, T., “Gas flow simulation and visualization in cylinder of motor-cycle engine,” SAE paper No. 2004-32-0004, 2004,
    [26] Versteeg, H. K. and Malalasekera, W., An Introduction To Computational Fluid Dynamics-the Finite Volume Method, John Wiley & Sons, New York, NY, 1995.
    [27] Issa, R. I., “Solution of the implicitly discretized fluid-flow equations by operator-splitting,” Journal of Computational Physics, Vol. 62, 1986, pp. 40-65
    [28] Kurniawan, W. H, Abdullah, S. and Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine,” Journal of Applied Science, Vol. 19, No. 19, 2007, pp. 2710-2724.

    無法下載圖示 全文公開日期 2019/06/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE