簡易檢索 / 詳目顯示

研究生: 許皓雲
Hao-Yun Hsu
論文名稱: 運用多重表徵與認知鷹架的國中數學科擴增實境桌上遊戲的學習成效與歷程分析
Analysis of the Learning Performance and Process of an Augmented Reality Board Game Using Multi-Representation and Cognitive Scaffolding for Mathematics Instruction
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 王舒民
Shu-Ming Wang
湯梓辰
Tzu-Chen Tang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 數學焦慮桌上遊戲遊戲式學習擴增實境多重表徵心流行為模式
外文關鍵詞: math anxiety
相關次數: 點閱:667下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數學的傳統學習環境存在著讓學習者產生數學焦慮的潛在因子,學生可能因為教師的教學活動設計不當,或是學習的內容難度加深而產生的數學焦慮,而數學焦慮所引起的數學迴避效應正是影響學習者數學學習成效的一大原因。為了有效的降低學習者的數學焦慮感。透過運用遊戲式學習的方式引入情境式教學模式,讓學習者感受到有別於傳統教學的不同感受,可藉此跳脫以往因數學焦慮產生對數學學習的迴避情節。透過桌上遊戲的玩家近距離互動,以及擴增實境AR技術的融入所提供的多重數學表徵,讓抽象的數學概念更加具體化,再搭配適當的認知鷹架的設計,就能有效地降低學習者的認知負荷,讓學習者的焦慮感再次獲得舒緩。
    本研究開發了一款結合擴增實境技術的桌遊「海戰方程式」,此桌遊是專為國中數學科的二元一次方程式圖形概念內容所設計,其中結合了海戰元素的情境脈絡、AR擴增實境的即時檢核機制、多元表徵鷹架、玩家間對戰的競爭式學習以及桌遊機制中攻防策略運用的遊戲式學習架構,來輔助學生們學習二元一次方程式的繪圖概念。研究中以台灣北部某國中65位學習者作為施測對象,藉由實徵分析來探討學生們的學習成效、數學焦慮程度、心流狀態、科技接受度以及學習行為序列分析。研究結果顯示,實驗組的學習者在進行遊戲活動後,學習成效顯著進步,數學焦慮程度也顯著下降,而心流狀態與科技接受度的各項子維度皆高於中位數。學習行為模式方面則是發現學習者能產生與學習相關的討論,並且透過這些討論修正錯誤的數學概念。此外,本研究也進行未來研究與教學實務相關的建議,供研究者們參考。


    The traditional environment for math learning has potential factors that cause math anxiety among learners. And the effect of math avoidance caused by math anxiety is a major reason that affects learners’ math learning. Using game-based learning to introduce a situated learning model may allow learners to prevent math avoidance caused by math anxiety. The further integration of board games and augmented reality (AR) technology with the proper design of the multi-representation with math and cognitive scaffolding can effectively reduce learners’ cognitive load and their math anxiety.
    The board game “Equation Battle” was developed for this study. It combined the learning of the concept of linear equations in two unknowns and AR technology, in which context, AR augmented real-time verification mechanism, scaffolds of competitive learning were integrated. The uses of offensive and defensive strategies were incorporated in the game-based learning framework to assist the students in learning the concept of linear equations in two unknowns.
    A total of 65 eighth graders from a junior high school in northern Taiwan took part in this study. The students’ learning outcomes, the degree of math anxiety, flow states, technology acceptance, and learning behavior sequential patterns were identified and empirically analyzed. The results showed that the students’ learning outcomes were significantly improved. The degree of math anxiety was also significantly reduced. Moreover, the sub-dimensions of the flow state and the acceptance of science and technology were higher than the median. In terms of learning behavior patterns, we found that learners can produce meaningful discussions and use these discussions to correct erroneous mathematical concepts. In addition, the study also provided future researchers with suggestions for the results of all empirical analyses.

    目錄 摘要 I 目錄 III 圖次 VI 表次 VII 第壹章 緒論 8 第一節 研究背景與動機 8 第二節 研究目的與研究問題 11 第貳章 文獻探討 13 第一節 遊戲式學習 13 第二節 情境式學習 15 第三節 鷹架理論 17 第四節 多重數學表徵 19 第五節 桌上遊戲與AR擴增實境應用於教學 20 第六節 心流與科技接受度 22 第七節 數學焦慮 25 第八節 小結 27 第参章 研究方法 28 第一節 研究設計 28 第二節 研究對象 28 第三節 研究工具 29 一、AR擴增實境軟體遊戲介紹 29 二、參與遊戲同意書、基本資料問卷與遊戲經驗問卷 40 三、心流問卷 40 四、科技接受度問卷 41 五、學習成效評量 42 六、數學焦慮問卷 45 七、行為模式編碼表 46 第四節 研究程序 46 第五節 資料蒐集與分析 47 第肆章 研究結果 49 第一節 學習者對「海戰方程式」之學習成效、數學焦慮程度變化、心流狀態與科技接受度 49 一、學習成效 49 二、數學焦慮程度 49 三、心流狀態 50 四、科技接受度 51 第二節 不同性別的學習者在學習成效、數學焦慮程度、心流狀態與科技接受度的差異 52 第三節 高、低學習成效的學習者在心流狀態與科技接受度的差異 53 第四節 高、低數學焦慮程度的學習者在心流狀態與科技接受度的差異 55 第五節 高、低心流狀態的學習者在學習成效後測、數學焦慮後測與科技接受度的差異 57 第六節 相關與路徑分析 58 一、相關分析 58 二、路徑分析 61 第六節 行為模式分析 65 第伍章 討論 76 第一節 學習者對於「海戰方程式」之學習成效、數學焦慮程度、心流狀態與科技接受度 76 第二節 不同性別的學習者在學習成效、數學焦慮程度、心流狀態、科技接受度的差異 77 第三節 高、低學習成效的學習者在心流狀態與科技接受度的差異 77 第四節 高、低心流狀態的學習者在學習成效、數學焦慮程度與科技接受度上的差異 78 第五節 相關與路徑分析 78 第六節 行為模式分析 79 第陸章 結論與建議 80 第一節 結論 80 第二節 建議 83 一、遊戲系統發展方面 83 二、教學實務用方面 83 三、未來研究上的建議 84 參考文獻 85 附錄一:參與遊戲同意書 95 附錄二:基本資料問卷 96 附錄三:個人遊戲經驗 97 附錄四:心流問卷 98 附錄五:接受度問卷 99 附錄六:學習成效評量 100 附錄七:數學焦慮量表 103

    參考文獻
    王柏硯(2018)。結合情境脈絡線索作為認知鷹架的擴增實境國中生物科桌上遊戲的學習成效與行為模式分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    余欣鴻(2015)。整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    呂彥承(2017)。運用認知鷹架與模擬操作之實驗室密室脫逃遊戲之設計與評估: 以化學滴定實驗為例。國立臺灣科技大學應用科技研究所,未出版,台北市。
    陳冠廷(2017)。運用合作問題解決與鷹架教學策略之擴增實境科學史教育桌遊之設計與評估。國立臺灣科技大學應用科技研究所,未出版,台北市。
    Abrahamson, D., & Kapur, M. (2018). Reinventing discovery learning: a field-wide research program. Instructional Science, 46(1), 1-10.
    Alessi, S. M., & Trollip, S. R. (2000). Multimedia for learning: Methods and development. Allyn & Bacon, Inc..
    Arroyo, I., Micciollo, M., Casano, J., Ottmar, E., Hulse, T., & Rodrigo, M. M. (2017, October). Wearable learning: multiplayer embodied games for math. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (pp. 205-216). ACM.
    Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current directions in psychological science, 11(5), 181-185.
    Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of experimental psychology: General, 130(2), 224.
    Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic bulletin & review, 14(2), 243-248.
    Ashcraft, M. H., Krause, J. A., & Hopko, D. R. (2007). Is math anxiety a mathematical learning disability?.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Bayir, E. (2014). Developing and Playing Chemistry Games To Learn about Elements, Compounds, and the Periodic Table: Elemental Periodica, Compoundica, and Groupica. Journal of Chemical Education, 91 (4), 531–535.
    Berbeitsky, R. D. (1985). An annotated Bibliography of the Literature reading with mathematics anxiety. Requirement for masters program, Indiana.
    Bransford, J. D., Brown, A., & Cocking, R. (1999). How people learn: Mind, brain, experience, and school. Washington, DC: National Research Council.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
    Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and performance. Computers & Education, 55(2), 566-575.
    Carey, E., Hill, F., Devine, A., & Szűcs, D. (2017). The modified Abbreviated Math Anxiety Scale: A valid and reliable instrument for use with children. Frontiers in psychology, 8, 11.
    CAST - The centre for applied special technology. (2012). Transforming education through universal design for learning.
    Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197.
    Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56(3), 604-615.
    Chen, C. H., Law, V., & Chen, W. Y. (2018). The effects of peer competition-based science learning game on secondary students’ performance, achievement goals, and perceived ability. Interactive Learning Environments, 26(2), 235-244.
    Cheng, K. H., & Tsai, C. C. (2014). Children and parents' reading of an augmented reality picture book: Analyses of behavioral patterns and cognitive attainment. Computers & Education, 72, 302-312.

    Cheung, S. K., & McBride, C. (2017). Effectiveness of Parent–Child Number Board Game Playing in Promoting Chinese Kindergarteners’ Numeracy Skills and Mathematics Interest. Early Education and Development, 28(5), 572-589.
    Clarke, S. G., & Haworth, J. T. (1994). ‘Flow’experience in the daily lives of sixth‐form college students. British Journal of Psychology, 85(4), 511-523.
    Coffland, D. A., & Xie, Y. (2015). The 21st century mathematics curriculum: A Technology enhanced experience. In Emerging Technologies for STEAM Education (pp. 311-329). Springer, Cham.
    Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. Knowing, learning, and instruction: Essays in honor of Robert Glaser, 18, 32-42.
    Commission of the European Communities (2005). Proposal for a Recommendation of the European Parliament and of the Council, COM (2005) 548 final, recommendation of the European parliament and of the council of 18 December 2006, on key competence for lifelong learning (pp. 10-18). Brussels: Commission of the European Communities.
    Commission of the European Communities (2007). A coherent framework of indicators and benchmarks for monitoring progress towards the Lisbon objectives in education and training (pp. 2-15). Brussels: Commission of the European Communities.
    Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPerennial) 1990.
    Csikszentmihalyi, M., & Csikszentmihalyi, I. (1975). Beyond boredom and anxiety (Vol. 721). San Francisco: Jossey-Bass.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    Dreger, R. M., & Aiken Jr, L. R. (1957). The identification of number anxiety in a college population. Journal of Educational Psychology, 48(6), 344.
    Dudour-Janvier, B., Bednarz, N., & Belanger, M.(1987). Pedagogical considerations concerning the problem of representation. Problems of representation in the teaching and learning of mathematics. Lawrence Erlbaum, Hillsdale: Claude Janvier, NJ. P109-122.
    Eccles, J. S., Wigfield, A., Midgley, C., Reuman, D., Iver, D. M., & Feldlaufer, H. (1993). Negative effects of traditional middle schools on students' motivation. The elementary school journal, 93(5), 553-574.
    Fang, Y. M., Chen, K. M., & Huang, Y. J. (2016). Emotional reactions of different interface formats: Comparing digital and traditional board games. Advances in Mechanical Engineering, 8(3), 1687814016641902.
    Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for research in Mathematics Education, 7(5), 324-326.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
    Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment, 10(2), 178-182.
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in human behavior, 48, 424-435.
    Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. ICCE 2012, 38.
    Hou, H. T., & Li, M. C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30, 29-38.
    Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014, May). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. In Paper presented at the global Chinese conference on computers in education (GCCCE 2014), Shanghai,China.

    Hou, H. T.,& Lin, Y. H. (2015). The Game-based Learning Activity Integrating Board Game and Mobile Online Searching Tasks for History Learning. poster presented at the 23th International Conference on Computers in Education (ICCE2015), Hangzhou,China, 11/30-12/4, 2015.
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, 24(1), 178-193.
    Hsieh, Y. H., Yi-Chun, L., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336.
    Hussain, S. Y. B. S., Hoe, T. W., & Idris, M. Z. B. (2017, May). Digital game based learning: A new method in teaching and learning mathematics. In AIP Conference Proceedings (Vol. 1847, No. 1, p. 030016). AIP Publishing.
    Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
    Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
    Isbister, K., Karlesky, M., Frye, J., & Rao, R. (2012, May). Scoop!: a movement-based math game designed to reduce math anxiety. In CHI'12 extended abstracts on human factors in computing systems (pp. 1075-1078). ACM.
    Jackson, S. & Marsh, H. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18, 17–35.
    Jagušt, T., Boticki, I., Mornar, V., & So, H. J. (2017, July). Gamified Digital Math Lessons for Lower Primary School Students. In Advanced Applied Informatics (IIAI-AAI), 2017 6th IIAI International Congress on (pp. 691-694). IEEE.
    Janvier, C. (1987a). Multiple embodiment principle. Excerpts from the conference.Problems of representation in the teaching and learning of mathematics (pp 99-107).
    Janvier, C. (1987b). Representation and understanding:The notion of function as an example.Problems of representation in the teaching and learning of mathematics (pp 679-71).
    Jensen, E. (2001). Arts with the brain in mind. Alexandria, VA: Association for Supervision and Curriculum Development.
    Kaput, J. J. (1987). Towards a theory of symbol use in mathematics. Problems of representation in the teaching and learning og mathematics.
    Kaufmann, H., & Schmalstieg, D. (2002, July). Mathematics and geometry education with collaborative augmented reality. In ACM SIGGRAPH 2002 conference abstracts and applications(pp. 37-41). ACM.
    Khan, M., Trujano, F., Choudhury, A., & Maes, P. (2018, April). Mathland: Playful Mathematical Learning in Mixed Reality. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (p. D108). ACM.
    Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments.
    Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
    Kiili, K., & Ketamo, H. (2018). Evaluating cognitive and affective outcomes of a digital game-based math test. IEEE Transactions on Learning Technologies, 11(2), 255-263.
    Kim, B., Park, H., & Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers & Education, 52(4), 800-810.
    Kim, H., & Ke, F. (2017). Effects of game-based learning in an OpenSim-supported virtual environment on mathematical performance. Interactive Learning Environments, 25(4), 543-557.
    Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Journal of Educational Technology & Society, 13(3), 224.
    Lazarus, M. (1974). Mathophobia: Some personal speculations. National Elementary Principal, 53(2), 16-22.

    Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics. Lawrence Erlbaum.
    Li, Q., Vandermeiden, E., Lemieux, C., & Nathoo, S. (2016). Secondary Students Learning Mathematics Through Digital Game Building: A Study Of The Effects And Students' Perceptions. International Journal for Technology in Mathematics Education, 23(1).
    Lindstedt, A., & Kiili, K. (2017, May). Evaluating playing experience and adoption of a math learning game. In Proceedings of the 1st International GamiFIN Conference (pp. 39-46).
    Lunce, L. M. (2006). Simulations: Bringing the benefits of situated learning to the traditional classroom. Journal of Applied Educational Technology, 3(1), 37-45.
    McLaren, B., Farzan, R., Adams, D., Mayer, R., & Forlizzi, J. (2017, June). Uncovering gender and problem difficulty effects in learning with an educational game. In International Conference on Artificial Intelligence in Education (pp. 540-543). Springer, Cham.
    McLeod, J. (1993). An Introduction to Counselling (Buckingham, Open University Press). A helpful introduction to counselling theory and practice.
    Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its influence on young adolescents' course enrollment intentions and performance in mathematics. Journal of educational psychology, 82(1), 60.
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Moomaw, S. (2015). Assessing the difficulty level of math board games for young children. Journal of Research in Childhood Education, 29(4), 492-509.
    National Council of Teachers of Mathematics (Ed.). (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of.
    Norman, D. (2014). Things that make us smart: Defending human attributes in the age of the machine. Diversion Books.
    Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation, 31(1), 1-35.
    Organisation for Economic Co-operation and Development (OECD). (2016). PISA 2015 results in focus.
    Palmer, P. J. (2017). The courage to teach: Exploring the inner landscape of a teacher's life. John Wiley & Sons.
    Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15.
    Partnership for 21st Century Skills (2009). 21st Century skills, education and competitiveness: A resource and policy guide. Tuscon, AZ: Author.
    Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The journal of the learning sciences, 13(3), 423-451.
    Pinto, D., Mosquera, J., Gonzalez, C., Tobar-Muñoz, H., Fabregat, R., & Baldiris, S. (2017). Augmented Reality Board Game for supporting learning and motivation in an indigenous community.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21-21.
    Puntambekar, S., & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(2), 185-217.
    Radu, I., McCarthy, B., & Kao, Y. (2016, March). Discovering educational augmented reality math applications by prototyping with elementary-school teachers. In Virtual Reality (VR), 2016 IEEE (pp. 271-272). IEEE.
    Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: the role of problem solving strategies. Journal of experimental child psychology, 141, 83-100.
    Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: psychometric data. Journal of counseling Psychology, 19(6), 551.

    Santos, M., & Fernandes, D. M. (2018). Relating problem solving to financial education. Internationnal Journal For Research In Mathematics Education, 7(3).
    Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.
    Schwerdt, G., & Wuppermann, A. C. (2011). Is traditional teaching really all that bad? A within-student between-subject approach. Economics of Education Review, 30(2), 365-379.
    Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153-189.
    Skillen, J., Berner, V. D., & Seitz-Stein, K. (2018). The rule counts! Acquisition of mathematical competencies with a number board game. The Journal of Educational Research, 111(5), 554-563.
    Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
    Smith, E., & Golding, L. (2018). Use of board games in higher education literature review. MSOR Connections, 16(2).
    Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of learning disabilities, 31(4), 344-364.
    Suinn, R. M., & Edwards, R. (1982). The measurement of mathematics anxiety: The mathematics anxiety rating scale for adolescents—MARS‐A. Journal of Clinical Psychology, 38(3), 576-580.
    Tobias, S., & Weissbrod, C. (1980). Anxiety and mathematics: An update. Harvard Educational Review, 50(1), 63-70.
    Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
    Vergnaud, G. (1987). Conclusion. Problems of representation in the teaching and learning of mathematics (pp 227-232).
    Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122.
    Volk, M., Cotič, M., Zajc, M., & Starcic, A. I. (2017). Tablet-based cross-curricular maths vs. traditional maths classroom practice for higher-order learning outcomes. Computers & Education, 114, 1-23.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Yang, K. H., Chu, H. C., & Chiang, L. Y. (2018). Effects of a Progressive Prompting-based Educational Game on Second Graders' Mathematics Learning Performance and Behavioral Patterns. Journal of Educational Technology & Society, 21(2), 322-334.

    QR CODE