簡易檢索 / 詳目顯示

研究生: 吳宗曄
Tzung-ye Wu
論文名稱: 股骨截肢長度與骨腫瘤對人工關節之應力分析影響
Effects of Femur Amputation Length and Bone Tumor on Stress Analysis of Prosthesis Joint
指導教授: 陳炤彰
Chao-chang Chen
口試委員: 林清安
Ching-an Lin
楊榮森
Rong-sen Yang
龍震宇
Chen-yu Lung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 161
中文關鍵詞: 人工關節植入股骨之模型股骨有限元素分析截骨長度比率骨腫瘤
外文關鍵詞: Bone-prosthesis model, Femur, Finite element analysis, Amputation limb ratio, Bone tumor
相關次數: 點閱:229下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的首要建立股骨實體模型重建的標準程序,以及使用腫瘤系列之人工關節植入股骨之有限元素分析流程。藉由醫學影像、電腦輔助設計及有限元素分析軟體,建立兩部分的模型,第一為幾何模型,其中包含三維股骨視覺模型、三維股骨輪廓模型、三維股骨實體模型及人工關節植入股骨之三維實體模型;第二為有限元素分析模型。針對人工關節植入股骨及臨床醫學上常發生的病例,進行生物力學有限元素分析,假設人在單腳站立時髖關節受力的狀態,探討比較股骨材料性質之均質性與正交性、人工關節植入股骨、比較植入人工關節之截骨長度比率、比較10組病例之應力分析差異及股骨遭骨腫瘤破壞。根據本研究分析結果顯示,截骨長度不宜過度極端,其截骨長度比率40 %∼50 % 於密質骨之應力分佈較為平均;比較10組病例之應力分析,若病患骨幹愈粗,愈能夠承受負荷;若病患骨幹曲率愈大,容易造成彎矩應力增大;當骨腫瘤罹患位置於近端股骨或中端股骨,假設骨腫瘤為圓柱形,直徑達20 mm時已影響股骨結構強度,此時宜置換腫瘤系列之人工關節。依據本研究發展之流程及分析結果,可提供訊息協助醫師於臨床的診斷及治療。


This research is to establish a procedure of reconstructing femur solid model for FEA of prosthesis implantation of femur in oncology system. With softwares of medical image, CAD and FEA, the geometry model includes bone-visual model (BVM), bone-contour model (BCM), bone-solid model (BSM) and bone-prosthesis model (BPM) have been constructed. Mesh model for FEA has also been implemented to investigate the amputation limb ratio and effects of bone tumor. Material of isotropic and orthotropic property for cortical bone of femur have been considered in EFA. Then the amputation limb ratio by implantation prosthesis and comparison of 10 cases for stress analysis have been performed. The effects of size and location of bone tumor in femur have been analyzed with stress analysis. Results show that the amputation limb ratio is suggested to be within 40 % ~ 50 % because the maximum von Mises stress of cortical bone distributes more uniformly. Comparisons of stress analysis results of 10 cases of proximal BPM, the thicker the femur diaphysis is, the higher loading it can be sustained. The larger curvature of the femur diaphysis is, the higher bending stress occurs. If the bone tumor locates on the proximal femur or medial femur, the maximum von Mises stress increases significantly as the diameter of bone tumor reaches 20 mm. Therefore, it is recommended to replace the prosthesis of oncology system. Results of the developed BPM and FEA are expected to provide clinical information for diagnosis and therapy.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 研究動機與目的 1-3 股骨構造說明 1-4 文獻回顧 1-4-1 人工關節的發展 1-4-2 CT影像於醫學工程的應用 1-4-3 有限元素分析於生物力學的應用 1-4-4 國內相關領域文獻回顧 1-4-5 文獻回顧討論 1-5 研究方法 1-6 章節介紹 第二章 建立股骨實體模型之標準程序 2-1 定義人體與股骨之座標系 2-2 定位股骨實體模型 2-3 建立股骨視覺模型 2-4 建立股骨輪廓模型 2-4-1 調整輪廓曲線的起始點 2-4-2 輪廓曲線圓滑化 2-5 比較四種建立股骨實體模型之方法 2-5-1 股骨曲面之曲率分析 2-5-2 股骨實體網格之展弦比分析 2-6 建立股骨實體模型 2-7 建立人工關節植入股骨之實體模型 2-8 建立股骨遭骨腫瘤破壞之實體模型 2-9 匯入輪廓之尺寸驗證 2-10 建立股骨實體模型結語 第三章 有限元素分析流程與驗證 3-1 破壞理論-von Mises降伏準則 3-2 有限元素分析流程 3-2-1 匯入模型與設定材料性質 3-2-2 布林運算-黏合處理 3-2-3 元素類型與網格化 3-2-4 接觸條件 3-2-5 施力條件與邊界條件 3-3 收斂測試 3-4 有限元素分析模型驗證 3-5 有限元素分析結語 第四章 有限元素分析結果 4-1 比較股骨材料性質之均質性與正交性之應力分析 4-2 人工關節植入股骨之應力分析 4-3 比較植入人工關節之截骨長度比率之應力分析 4-4 比較10組病例之應力分析差異 4-5 股骨遭骨腫瘤破壞後之應力分析 第五章 結果與討論 5-1 重建股骨實體模型之方法 5-2 探討有限元素分析之流程 5-3 股骨遭骨腫瘤破壞位置之應力分析差異 第六章 結論與建議 6-1 結論 6-2 建議 參考文獻 附錄A 下肢詳細解剖圖 附錄B DICOM標準簡述 附錄C 內收肌群詳細部位之名稱 附錄D 製作人造假骨 作者簡介

[1] Dieppe, P., “Towards a better understanding of osteoarthritis of the knee joint”, The Knee 7, pp.135-137 (2000).
[2] Yang, R.S., “Endoprosthetic reconstruction for limb salvage surgery”, Biomedical Engineering-Application, Basis and Communications 10, pp.23-34 (1998).
[3] Bartel, D.L., Rawlinson, J.J., Burstein, A.H., Ranawat, C.S., Flynn, W.F., “Stresses in Polyethylene Components of Contemporary Total Knee Replacements”, Clinical Orthopaedics & Related Research, pp.76-82 (1995).
[4] Godest, A.C., Beaugonin, M., Haug, E., Taylor, M., Gregson, P.J., “Simulation of Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis”, J. Biomechanics 32, pp.267-275 (2002).
[5] Liau, J.J., Hu, C.C., Cheng, C.K., Huang, C.H., Lo, W.H., “The Influence of Inserting a Fuji Pressure Sensitive Film Between the Tibiofemoral Joint of Knee Prosthesis on Actual Contact Characteristics”, J. Clinical Biomechanics 16, pp.160-166 (2001).
[6] Yang, R.S., “The application of expandable endoprosthetic reconstruction for limb salvage surgery in the skeletally immature patients”, Biomedical Engineering-Application, Basis and Communications 13, pp.141-147 (2001).
[7] Pawlikowski, M., Skalski, K., Haraburda, M., “Process of hip joint prosthesis design including bone remodeling phenomenon”, Computers and Structures 81, pp.887-893 (2003).
[8] Insall, J.N., Surgery of the knee, Chapter 23, Edited by Insall J.N., Scott W.N., Third edition, Churchill Livingstone Inc. (2001).
[9] Barr, J.S., Eaton, R.G., “Elbow reconstruction with a new prosthesis to replace the distal end of the humerus : A case report”, The Journal of Bone & Joint Surgery 47A, pp.1408-1413 (1965).
[10] Nils Goetzen, Frank Lampe, Roman Nassut, Michael M. Morlock, “Load-shift-numerical evaluation of a new design philosophy for uncemented hip prostheses”, J. Biomechanics 38, pp.595-604 (2005).
[11] 聯合骨科器材公司,http://www.uoc.com.tw/。
[12] 莊克士,醫學影像物理學,第227~242頁,合記圖書出版社,民國九十二年。
[13] Skinner, H.B., Kim, A.S., Keyak, J.H., Mote, C.D., “Femoral Prosthesis Implantation Induces Changes in Bone Stress that Depend on the Extent of Porous Coating”, Journal of Orthopaedic Research 12, pp.553-563 (1994).
[14] Zannoni, C., Mantovani, R., Viceconti, M., “Material Properties Assignment to Finite Element Method of Bone Structure-A New Method”, Medical Engineering & Physics 20, pp.735-740 (1998).
[15] 簡健哲,「頭部CT與MR影像融合」,國立中央大學機械工程研究所碩士論文,民國八十九年。
[16] Banchong Mahaisavariya, Kriskrai Sitthiseripratip, Trongtum Tongdee, Erik L.J. Bohez, Jos Vander Sloten, Philip Oris, “Morphological study of the proximal femur : a new method of geometrical assessment using 3-dimensional reverse engineering”, Medical Engineering & Physics 24, pp.617-622 (2002).
[17] Chen, Yih-Ling, and Chen, Shyh-Jye, “Manufacturing of Cardiac Models Through Rapid PrototypingTechnology for Surgery Planning”, International Conference on Advanced Manufacture,
Nov 28-Dec 2 (2005).
[18] Shim, V.B., Pitto, R.P., Streicher, R.M., Hunter, P. J. and Anderson, I.A., “The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis ”, J. Biomechanics 40, pp.26-35 (2007).
[19] Brekelmans, W., Poort, H., Slooff, T., “A new method to analysis the mechanical behavior of skeletal parts”, Acta Orthop Scand 43, pp.301-317 (1972).
[20] Yerry, M.A. and Shephard, M.S., “Automatic three-dimensional mesh generation by the modified-octree technique”, International Journal for Numerical Methods in Engineering 20, pp.1965-1990 (1983).
[21] Verdonschot, N. and Huiskes, R., “The effects of cement-stem
debonding in THA on the long-term failure probability of cement.”, J. Biomechanics 30, pp.795-802 (1997).
[22] Massimiliano Baleani, Marco Viceconti, Roberto Muccini, Mauro Ansaloni, “Endurance verification of custom-made hip prostheses”, International Journal of Fatigue 22, pp.865-871 (2000).
[23] Taylor, W.R., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M.D., Hobatho, M.C., Rakotomanana, L., Clift, S.E., “Determination of orthotropic bone elastic constants using FEA and modal analysis”, J. Biomechanics 35, pp.767-773 (2002).
[24] Nuno, N., Avanzolini, G., “Residual stresses at the stem–cement interface of an idealized cemented hip stem”, J. Biomechanics 35, pp.849-852 (2002).
[25] 廖富生,「自動化有限元素分析流程於股骨柄設計之應用」,中原大學醫學工程研究所碩士論文,民國九十四年。
(Liau, Fu Sheng, “Automation of Finite Element Analysis Procedures for the Application of Femoral Stem Design”, Department of Biomedical Engineering, Chung Yuan Christian University, 2005.)
[26] Peng, L., Bai, J., Zeng, X., Zhou, Y., “Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions”, Medical Engineering & Physics 28, pp.227-233 (2006).
[27] 林宜鋒,「訂製式模組化人工關節植入柄之分析與設計」,國立台灣科技大學機械工程研究所碩士論文,民國九十三年。
(Lin, Yi Fong, “Analysis and Design of Stem of Custom-Made Modular Joint Prosthesis”, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2004.)
[28] 鄭惟心,「超高分子聚乙烯元件之應力分佈:有限元素法分析與臨床磨耗位置之比較」,長庚大學機械工程研究所碩士論文,民國九十三年。
(Cheng, Wei Hsin, “The Stress Distribution of UHMWPE Acetabular Cup in Total Hip Replacement : by Finite Element Method and Clinical Observation”, Department of Mechanical Engineering, Chang Gung University, 2004.)
[29] 袁俊溢,「髖骨韌帶對模組化人工關節之附著影響分析」,國立台灣科技大學機械工程研究所碩士論文,民國九十四年。
(Yuan, Jiunn Yi, “Effects of Attachment of Patella-Tendon to Modular Oncology Prosthesis”, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2005.)
[30] 陳建良,「股骨頸固定式假體之有限元素分析」,國立陽明大學醫學工程研究所碩士論文,民國九十四年。
(Chen, Jian Liang, “Finite Element Analysis of the femoral neck fixed prosthesis”, Institute of Biomedical Engineering, National Yang Ming University, 2005.)
[31] 周致宇,「模組化人工關節整合分析及身高體重影響」,國立台灣科技大學機械工程研究所碩士論文,民國九十五年。
(Chou, Chih Yu, “Integration of Modular Prosthesis Analysis and Effect of Patient Weight and Height”, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2006.)
[32] Barney, LeVeau , Williams and Lissner : Biomechanics of human motion, Chapter 5, Second edition, W. B. Saunders Company, pp.102-103 (1977).
[33] 劉江川,解剖學彩色圖譜,第417~435頁,茂昌圖書有限公司,民國九十二年。
[34] Rogers, David F., Adams, J. Alan, Mathematical elements for computer graphics, Chapter 5, Second edition, McGraw Hall, pp.305-307 (1990).
[35] Faux, I. D., Computational geometry for design and manufacture, Chapter 4, Rainbow-Bridge Book, pp.111-113 (1978).
[36] ANSYS training guide.
[37] Hibbeler, R.C., Mechanics of materials, Chapter 10, Sixth edition, Prentice Hall, pp.542-543 (2005).
[38] Mann, K.A., Bartel, D.L., Wright, T.M., Burstein, A.H., “Coulomb frictional interfaces in modeling cemented total hipreplacements: A more realistic model”, J. Biomechanics 28(9), pp.1067-1078 (1995).
[39] Alberto, P., Marek, B., Marco, V., “The primary stability of a cementless stem varies between subjects as much as between activities”, J. Biomechanics 36, pp.777-785 (2003).
[40] Tai, Ching-Lung, Shih, Chun-Hsiung, Chen, Weng-Pin, Lee, Shiuann- Sheng, Liu, Yu-Liang, Hsieh, Pang-Hsin, Chen, Wen-Jer, “Finite element analysis of the cervico-trochanteric stemless femoral prosthesis”, J. Clinical Biomechanics 18, pp.S53-S55 (2003).
[41] Kharwadkar, N., Kent, R.E., Sharara, K.H., Naique, S., “5° to 6° of distal femoral cut for uncomplicated primary total knee arthroplasty : Is it safe?”, The Knee 13, pp.57-60 (2006).
[42] DICOM 3.0, “Digital Imaging and Communication in Medicine (DICOM)-Part3 : Information Object Definitions”, ACR-NEMA, (2004).
[43] DICOM 3.0, “Digital Imaging and Communication in Medicine (DICOM)-Part5 : Data Structures and Encoding”, ACR-NEMA, (2004).

QR CODE