簡易檢索 / 詳目顯示

研究生: RAGHAVENDRAKUMAR RANGAPPA
RAGHAVENDRAKUMAR RANGAPPA
論文名稱: 使用 CO2 和 N2 發泡劑生產和表徵 TPU 泡
Production and Characterization of TPU Foam by Using CO2 and N2 Blowing agents
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 葉樹開
Shu-Kai Yeh
邱方遒
Fang-Chyou Chiu
童世煌
Shih-Huang Tung
賴森茂
Sen Mao Lai
何 明樺
Ming-Hua Ho
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 231
中文關鍵詞: 熱塑性聚氨酯泡材硬度成核劑發泡劑二氧化碳氮氣混煉塑化
外文關鍵詞: Thermoplastic polyurethane foam, hardness; nucleating agents;, blowing agents; CO2; N2;, extrusion;, plasticization
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱塑性聚氨酯 (TPU) 泡材是緩衝、運動鞋、航太、運輸、生物醫學、電磁屏蔽、傳感、智能響應、建築、電子和包裝應用的理想輕質材料. 最近,新興起的發泡熱塑性聚氨酯 (ETPU) 製成的泡材,由於具有可回收性,逐漸取代傳統的交聯乙基醋酸乙烯酯 (EVA) 泡材已被取代。
    發泡TPU不同於硬質發泡高分子,因為TPU存在發泡後收縮的問題,很難製備低密度的TPU泡材。在本論文中,我們使用PTMEG-MDI/BD 基 TPU 做為基材,並使用 CO2 和 N2 等物理發泡劑製備為發泡材料。我們研究了混煉、成核劑、發泡劑和硬度對 TPU 發泡行為和物理性能的影響。我們的研究成功製備了具有超過 6 倍膨脹、具有緻密泡孔結構和有限收縮的 TPU 泡材。由於 TPU 的低模量和 CO2 的高擴散率,目前仍然很難使用 CO2 作為發泡劑製備彈性體泡材。
    然而,使用氮氣作為發泡劑可以克服這些缺點。N2 高壓釜發泡技術是製備 TPU 泡材的環保技術。製備的泡材具有優異的尺寸穩定性,收縮率小於 4%。因此,N2 是解決 TPU 泡材收縮的優良發泡劑。此外,使用氮氣製備的泡材泡孔尺寸更小、泡孔密度更高。本論文還報告了一個獨特的現象。將 N2 溶解在 TPU 中不僅會降低熔點,也會降低結晶度。在高壓N2下退火對具有高軟段含量的 TPU 顯示出顯著的塑化效果。不完全有序晶體的熔融峰在 100°C 左右完全消失。該研究有助於了解N2塑化對TPU結晶的影響以及氮氣發泡技術的發展。


    Thermoplastic polyurethane (TPU) foam is an ideal lightweight material for cushioning, sports shoes, aerospace, transportation, biomedical, electromagnetic shielding, sensing, intelligent response, construction, electronics, and packaging applications. Recently, thermoplastic polyurethane (TPU) foam gradually replaced crosslink ethyl vinyl acetate (EVA) foams due to their recyclability.
    Foaming TPU differs from foaming rigid plastics because TPU has post-foam shrinkage problems, which makes it difficult to fabricate low-density TPU foams. It is still challenging to fabricate elastomeric foams with limited shrinkage and good surface quality using CO2 as a blowing agent because the low modulus of TPU and high diffusivity of CO2 led to foam shrinkage. This study used PTMEG-MDI/BD-based TPU as a polymer matrix. The microcellular foams were produced using physical blowing agents (PBAs) such as CO2 and N2. The effect of extrusion, nucleating agents, blowing agents, and hardness on the foaming behavior and physical properties of TPU were studied.
    Extrusion significantly influences the thermal and mechanical properties and foaming behavior of TPUs. Although the molecular weight decreased significantly after extrusion, the re-distribution of hard segments in the TPU caused the cell density to increase by 30 to 50 times. In addition, the elongation at the break of the TPU solids increased by 40%. The cell size, expansion ratio, cell density, shrinkage versus saturation temperature (Tsat), and saturation pressure (Psat) were also studied extensively. The results show that Tsat significantly affects the expansion ratio, and Psat has more impact on foam shrinkage, while extrusion processing has little impact on foam shrinkage.
    On the other hand, the effect of N2 dissolution on the thermal behavior of polyether-based thermoplastic polyurethanes (TPUs) was extensively investigated. Dissolving N2 in TPU reduced the melting point but decreased crystallinity. A weight-loss-based test showed that the N2 sorption increased with increased soft segment (SS) content. Annealing with N2 showed an apparent plasticizing effect on TPU with high SS content. The melting peak of imperfectly ordered crystals, around 100°C, completely disappeared. This research contributes to understanding the impact of N2 plasticization on TPU crystallization and the development of nitrogen foaming technology. Using N2 as a PBA is an eco-friendly foaming method to overcome foam shrinkage problems. At the maximum expansion ratio, the N2-blown foams exhibited a fine cell structure with a shrinkage ratio of less than 4%. As a result, N2 might be an excellent blowing agent for TPU to solve the foam shrinkage problem.

    Contents Pages 摘要 i Abstract ii Acknowledgments iv List of Contents vi List of Figures xi List of Tables xv List of Abbreviations and Symbols xvi Chapter 1 Introduction 1 1.1 Background of the study 1 1.2 Elastomeric foam 4 1.2.1 Thermoplastic polyurethanes foam 6 1.3 Physical foaming of thermoplastic foam 7 1.4 Research Motivation 8 1.5 Objective of the thesis 9 1.6 Thesis structure 9 Chapter 2 Literature Review 12 2.1 The Fundamentals of Polymer Foaming 12 2.2 Type of polymer foam 12 2.3 Foaming technologies 14 2.3.1 Blowing agents 17 2.4 Cell Nucleation 20 2.4.1 Homogenous nucleation 22 2.4.2 Heterogeneous Nucleation 24 2.4.3 Nucleating agents induced heterogeneous nucleation 28 2.4.4 Crystals-induced heterogeneous nucleation 31 2.4.5 Gas-induced polymer crystallization/plasticization 32 2.5 Foam shrinkage 35 2.6 Classification of the thermoplastic elastomers foaming process 39 2.6.1 Batch foaming 39 2.6.2 Autoclave bead foaming and molding 41 2.6.3. Continuous extrusion foaming 43 2.6.4 Molding of bead foams 45 2.6.5 Foam injection molding 50 2.6.6 Compression foam molding 52 2.7 General Properties and Applications of thermoplastic elastomers foam 53 2.7.1 Relative density 54 2.7.2 Mechanical properties 54 2.7.3 Thermal properties 56 2.7.4 Energy Absorption Properties 58 2.7.5 Acoustical Properties 59 2.7.6 General Applications of TPE foam 60 2.8 Summary 60 Chapter 3 Materials and Experimental Methods 63 3.1 Introduction 63 3.2 Materials 63 3.2.1 Chemistry of Thermoplastic Polyurethane 63 3.2.2 Talc and Silica Used as Nucleating Agents 66 3.2.3 Carbon dioxide and Nitrogen used as Blowing agents 68 3.3 Sample preparation 70 3.3.1 Dog-bone shape TPU sample 70 3.3.2 Circular Shape TPU sample 70 3.4 One-step Batch Foaming Experiment 71 3.5 Characterization 72 3.5.1 Isothermal annealing analysis 72 3.5.2 Differential Scanning Calorimeter (DSC) 72 3.5.3 Thermogravimetric analysis (TGA) 73 3.5.4 Thermomechanical Analysis (TMA) 73 3.5.5 Mechanical properties measurement 74 3.5.6 Rheology experiment 75 3.5.7 Hardness measurement 76 3.5.8 N2 sorption behavior 76 3.5.9 Foam density expansion and shrinkage ratio measurement 76 3.5.10 Cell Analysis 77 Chapter 4 Effect of Extrusion, Nucleating Agents, and Processing Parameters on the Foaming Behavior of Thermoplastic Polyurethane with Different Hard Segments 79 4.1 Introduction 79 4.2 Experimental methods 81 4.2.1 Materials 81 4.2.2 Sample Preparation 82 4.2.3 Material characterization 82 4.2.4 Thermal analysis 82 4.2.5 Batch foaming 82 4.2.6 Foam Structural characterization 83 4.3 Results and discussion 83 4.3.1 Effect of extrusion on physical properties of TPU at different hardness levels 83 4.3.2 Mechanical properties 84 4.3.3 Softening point 86 4.3.4 Differential Scanning Calorimeter (DSC) Thermal Analysis 86 4.3.5 Effect of extrusion and foaming temperature on the foaming behavior 90 4.3.6 Effect of Psat on foaming behavior of TPU 94 4.3.7 Effect of nucleating agents on the foaming behavior 96 4.3.8 Effect of extrusion on shrinkage behaviour of foams 100 4.3.9 Effect of Tsat and Psat on the shrinkage behaviour foam 102 4.3.10 Effect of nucleating agents on the shrinkage of TPU foam 105 4.4. Conclusion 106 Chapter 5 Effect of N2 plasticization on the crystallization of different hardnesses of thermoplastic polyurethanes 108 5.1 Introduction: 108 5.2 Experimental methods 111 5.2.1 Materials 111 5.2.2 Melt compounding 111 5.2.3 Isothermal annealing analysis 111 5.2.4 Differential scanning calorimetry analysis 111 5.2.5 N2 sorption behavior 112 5.3 Results and discussion 113 5.3.1 Effect of post-annealing on the crystalline melting characteristics of TPUs 113 5.3.2 N2 Sorption in TPUs 120 5.3.3 Effect of annealing on the crystallization behavior of TPUs in the presence of N2 122 5.3.4 Effect of N2 pressure on the crystallization of TPU 127 5.4. Conclusion 129 5.5 Supplementary Material 131 5.5.1 TGA Analysis of TPU 131 5.5.2 Effect of thermal annealing on the crystallization behavior of TPUs 131 5.5.3 Effect of annealing on the crystallization behavior of TPUs in the presence of N2 132 5.5.4 ΔHm1 and ΔHm2 versus Ta 133 Chapter 6 Investigating the Role and Impact of N2 as a Blowing Agent in the Fabrication of Thermoplastic Polyurethane Foams 136 6.1 Introduction 136 6.2 Experimental methods 139 6.2.1 Materials 139 6.2.2 Melt compounding 139 6.2.3 Foaming process 139 6.2.4 Foam Structural characterization 140 6.3 Results and discussion 140 6.3.1 Effect of TPU hardness and temperature on the foaming behavior 140 6.3.2 Effect of pressure on foaming behavior of TPU foams 148 6.3.3 Dimensional stability of TPU foam 151 6.4 Conclusion 153 6.5 Supplementary material 155 Chapter 7 Summary and Future Work Recommendation 159 7.1 Summary 159 7.1.1 Effect of extrusion on the physical properties and foaming behavior of various hardness of TPU. 159 7.1.2 Effect of N2 plasticization on the crystallization behavior of TPU 160 7.1.3 Investigating the Role and Impact of N2 as a Blowing Agent in the Fabrication of Thermoplastic Polyurethane Foams 160 7.2 Future work recommendation 161 7.3 List of Publications and conferences 162 7.3.1 SCI Indexed Jounral Publications 162 7.3.2 Conferences Presentation with Proceeding: 163 References 164 Appendix I: Effect of Nanostructured Talc and Silica on Thermal, Rheological and foaming behavior of TPU Nanocomposites 195 AI-1 Talc and Silica dispersion in TPUs 195 Talc 195 Silica OX50 197 AI-2 Thermal Properties 85AU and 90AL with talc and OX50 198 AI-3 Effect of nucleating agents on the rheological behavior of TPU 201 AI-4 Effect of Talc and OX50 on the foaming behavior of 85AU and 90AL 204

    References
    1. C. G. Munters, and J. G. Tandberg, Heat Insulation. 1935. US2023204A
    2. S. T. Lee, Chapter 1 Introduction in Polymeric foams: innovations in Technologies and environmentally friendly materials. 1st ed edited by S. T. Lee, 2022, Boca Raton, FL: CRC Press.
    3. W. Zhai, J. Jiang, and C. B. Park, A review on physical foaming of thermoplastic and vulcanized elastomers. Polymer Reviews, 2022. 62: p. 95-141.
    4. D. Raps, N. Hossieny, C. B. Park, and V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015. 56: p. 5-19.
    5. B. E. Obi, Polymeric foams structure-property-performance: a design guide. PDL handbook series. 2018, William Andrew Publishing: Oxford, United Kingdom: p. 394.
    6. J. Sarver, and E. Kiran, Foaming of Polymers with Carbon Dioxide – The year-in-review – 2019. The Journal of Supercritical Fluids, 2021. 173: p. 105166.
    7. R. Banerjee, and S. S. Ray, Foamability and Special Applications of Microcellular Thermoplastic Polymers: A Review on Recent Advances and Future Direction. Macromolecular Materials and Engineering, 2020. 305: p.1-49.
    8. P. Mahallati, and D. Rodrigue, Thermoplastic Elastomer Foams Based on Recycled Rubber. Cellular Polymers, 2014. 33: p. 233-248.
    9. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nano cellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519
    10. E. Di Maio and E. Kiran, Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. Journal of Supercritical Fluids, 2018. 134: p. 157-166.
    11. G. Coste, C. Negrell, and S. Caillol, From gas release to foam synthesis, the second breath of blowing agents. European Polymer Journal, 2020. 140: p. 110029.
    12. N. Hossieny, Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism. 2014, University of Toronto (Canada): Ann Arbor. p. 204.
    13. D. Klempner, V. Sendijareviʹc, and R. M. Aseeva, Handbook of polymeric foams and foam technology. 2nd ed. 2004, Gardner Publications, Hanser Publishers, Hanser Gardener, Munich Cincinnati: p.584.
    14. Z. Kong Q. Tian, R. Zhang, J. Yin, L. Shi, W. B. Ying, H. Hu, C. Yao, K. Wang, J. Zhu, Reexamination of the microphase separation in MDI and PTMG based polyurethane: Fast and continuous association/dissociation processes of hydrogen bonding. Polymer, 2019. 185: p. 121943.
    15. P. Kasprzyk, E. Sadowska, and J. Datta, Investigation of thermoplastic polyurethanes synthesized via two different prepolymers. Journal of Polymers and the Environment, 2019. 27 (11): p. 2588-2599.
    16. B. Lan, P. Li, Q. Yang, P. Gong, Dynamic self-generation of hydrogen bonding and relaxation of polymer chain segment in stabilizing thermoplastic polyurethane microcellular foams. Materials Today Communications, 2020. 24:P.1-12.
    17. J. G. Drobny, Handbook of thermoplastic elastomers. Second Edition. ed. Pdl Handbook Series. 2014, Amsterdam: Elsevier, p. 441.
    18. M. Nofar, E. Büşra Küçük, and B. Batı, Effect of hard segment content on the microcellular foaming behavior of TPU using supercritical CO2. The Journal of Supercritical Fluids, 2019. 153: p. 104590.
    19. N. J. Hossieny, M. R. Barzegari, M. Nofar, S. H. Mahmood, C. B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014. 55: p. 651-662.
    20. G. Wang, G. Zhao, G. Dong, Y. Mu, C. B. Park, and G. Wang, Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. European Polymer Journal, 2018. 103: p. 68-79.
    21. https://www.researchandmarkets.com/, Elastomeric Foam Market. 2022.
    22. F. Prissok, and F. Braun, Foams based on thermoplastic polyurethanes. 2007, US9884947B2.
    23. R. Jiang, Y. Chen, S. Yao, T. Liu, Z. Xu, C. B. Park, L. Zhao, Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction. Polymer, 2019. 179: p. 121628
    24. R. Jiang, S. Yao, Y. Chen, T. Liu, Z. Xu, C. B. Park, and L. Zhao, Effect of chain topological structure on the crystallization, rheological behavior and foamability of TPEE using supercritical CO2 as a blowing agent. The Journal of Supercritical Fluids, 2019. 147: p. 48-58.
    25. Z. X. Zhang, X. R. Dai, L. Zou, S. B. Wen, T. K. Sinha, H. Li, A developed, eco-friendly, and flexible thermoplastic elastomeric foam from SEBS for footwear application. Express Polymer Letters, 2019. 13 (11): p. 948-958.
    26. W. Zhai, S. N. Leung, L. Wang, H. E. Naguib, and C. B. Park, Preparation of microcellular poly(ethylene-co-octene) rubber foam with supercritical carbon dioxide. Journal of Applied Polymer Science, 2010. 116: p. 1994-2004.
    27. H. Zheng, G. Pan, P. Huang, D. Xu, W. Zhai, Fundamental influences of crosslinking structure on the cell morphology, creep property, thermal property, and recycling behavior of microcellular EPDM foams blown with compressed CO2. Industrial & Engineering Chemistry Research, 2020. 59: p. 1534-1548.
    28. S. K. Yeh, Y. C. Liu, C. C. Chu, K. C. Chang, and S. F. Wang, Mechanical properties of microcellular and nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2017. 56: p. 8499-8507.
    29. T. Ellingham, H. Kharbas, M. Manitiu, G. Scholz, L. S. Turng, Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties. Frontiers of Mechanical Engineering, 2018. 13 (1): p. 96-106.
    30. W. Lin, Y. Hikima, and M. Ohshima, Microcellular foam of styrene–isobutylene–styrene copolymer with N2 using polypropylene as a crystallization nucleating and shrinkage reducing agent. Journal of Applied Polymer Science.2022: p. 1-10.
    31. X. Gao, Y. Chen, P. Chen, Z. Xu, L. Zhao, D. Hu, Supercritical CO2 foaming and shrinkage resistance of thermoplastic polyurethane/modified magnesium borate whisker composite. Journal of CO2 Utilization, 2022. 57: p. 101887.
    32. R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, and Y. Liu, Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending. Polymer Testing, 2017. 63: p. 38-46.
    33. W. Wang, X. Liao, Y. He, J. Li, Q. Jiang, and G. Li, Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2020. 163: p. 104861.
    34. W. Wang, X. Liao, F. Guo, G. Wang, Z. Yan, F. Liu, and G. Li, Facile fabrication of lightweight shape memory thermoplastic polyurethane/polylactide foams by supercritical carbon dioxide foaming. Industrial and Engineering Chemistry Research, 2020. 59 (16), p.7611-7623.
    35. D. Zhao, G. Wang, and M. Wang, Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Journal of Applied Polymer Science, 2018.135: p. 46327.
    36. N. Hossieny, V. Shaayegan, A. Ameli, M. Saniei, C. B. Park, Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer, 2017. 112: p. 208-218.
    37. S. T. Lee, and C. B. Park, Foam extrusion: principles and practice. Second edition. ed. Polymeric foams. 2014, Boca Raton: Taylor & Francis.
    38. S. T. Lee, Polymeric foams: innovations in processes, technologies, and products. Polymeric foams series. 2017, Boca Raton: Taylor & Francis, CRC Press, p.389.
    39. K. Okamoto, Microcellular processing. 2003: Hanser Gardner Publications.
    40. Y. Ding, M. H. Hassan, O. Bakker, S. Hinduja, P. Bártolo, A Review on microcellular injection moulding. Materials, 2021. 14 (15): p. 4209.
    41. J. Kuhnigk, T. Standau, D. Dörr, C. Brütting, V. Altstädt, H. Ruckdäschel, Progress in the development of bead foams – A review. Journal of Cellular Plastics, 2022. 58: p. 707-735.
    42. B. Notario, J. Pinto, M. A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016. 78-79: p. 93-139.
    43. M. Nofar, and C. B. Park, Polylactide foams. Fundamentals, manufacturing, and applications. Plastics Design Library, ed. 2018, William Andrew Publishing. p.1-16.
    44. N. M. Demewoz, and S. K. Yeh, Fabrication and characterization of low-density nanocellular foam based on PMMA/TPU blends. Polymer, 2022. 240: p. 124493.
    45. N. C. Fahlbusch, J. L. Grenestedt, and W. Becker, Effective failure behavior of an analytical and a numerical model for closed-cell foams. International Journal of Solids and Structures, 2016. 97-98: p. 417-430.
    46. M. Antunes, and J. I. Velasco, Multifunctional polymer foams with carbon nanoparticles. Progress in Polymer Science, 2014. 39: p. 486-509.
    47. G. Wu, P. Xie, H. Yang, K. Dang, Y. Xu, M. Sain, L. S. Turng, W. Yang, A review of thermoplastic polymer foams for functional applications. Journal of Materials Science, 2021. 56: p. 11579-11604.
    48. S. T. Lee, and N. S. Ramesh, Polymeric foams: mechanisms and materials. Polymeric foams series. 2004, Boca Raton: CRC Press. p.336
    49. N. J. Mills, Polymer foams handbook: engineering and biomechanics applications and design guide. 1st ed. 2007, Amsterdam; Boston: Butterworth Heinemann. p.535
    50. A. Rizvi, A. Tabatabaei, P. Vahedi, S. H. Mahmood, and C. B. Park, Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities. Polymer, 2018. 135: p. 185-192.
    51. S. Ebnesajjad, Fluoroplastics, Volume 2: Melt processible fluoropolymers-the definitive user's guide and data book. 2015, Norwich, NY, USA, William Andrew Publishing. p.450-507.
    52. T. Fieback, W. Michaeli, S. Latz, and M. E. Mondejar, Sorption and swelling measurements of CO2 and N2 on polyol for their use as blowing agents in a new PU foaming process device. Industrial & Engineering Chemistry Research, 2011. 50: p. 7631-7636.
    53. A. Wong, H. Guo, V. Kumar, C. B. Park, N. P. Suh, Microcellular Plastics. Encyclopedia of Polymer Science and Technology, 2016: p. 1-57.
    54. E. Kiran, J. A. Sarver, and J. C. Hassler, Solubility and diffusivity of CO2 and N2 in polymers and polymer swelling, glass transition, melting, and crystallization at high pressure: A critical review and perspectives on experimental methods, data, and modeling. The Journal of Supercritical Fluids, 2022. 185: p. 105378.
    55. C. T. Yang, K. L. Lee, and S. T. Lee, Dimensional stability of LDPE foams: Modeling and experiments. Journal of Cellular Plastics, 2002. 38: p. 113-128.
    56. C. B. Park, D. F. Baldwin, and N. P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995. 35: p. 432-440.
    57. R. L. Heck, A review of commercially used chemical foaming agents for thermoplastic foams. Journal of Vinyl & Additive Technology, 1998. 4: p.113-116
    58. D. Eaves, Handbook of polymer foams. 2004, Shawbury, Shrewsbury, Shropshire, U.K.: Rapra Technology. p.290
    59. J. Stehr, Chemical blowing agents in the rubber industry. Past – present – and future? International Polymer Science and Technology, 2016. 43: p. 1-10.
    60. H. A. Kharbas, J. D. McNulty, T. Ellingham, C. Thompson, M. Manitiu, G. Scholz, and L. S. Turng, Comparative study of chemical and physical foaming methods for injection-molded thermoplastic polyurethane. Journal of Cellular Plastics, 2017. 53: p. 373-388.
    61. A. Sekiya, and S. Misaki, The potential of hydrofluoroethers to replace CFCs, HCFCs, and PFCs. Journal of Fluorine Chemistry, 2000. 101: p. 215-221.
    62. J. Xu, Microcellular injection molding. Wiley series on polymer engineering and technology. 2010, Hoboken, N.J.: Wiley. p.618
    63. Z. Xu, G. Wang, J. Zhao, A. Zhang, G. Dong, G. Zhao, Anti-shrinkage, high-elastic, and strong thermoplastic polyester elastomer foams fabricated by microcellular foaming with CO2 & N2 as blowing agents. Journal of CO2 Utilization, 2022. 62: p. 102076.
    64. Y. Chen, D. Li, H. Zhang, Y. Ling, K. Wu, T. Liu, D. Hu, L. Zhao, Antishrinking strategy of microcellular thermoplastic polyurethane by comprehensive modeling analysis. Industrial & Engineering Chemistry Research, 2021. 60: p. 7155-7166.
    65. L. J. Lee, C. C. Zeng, X. Cao, X. M. Han, J. Shen, and G. J. Xu, Polymer nanocomposite foams. Composites Science and Technology, 2005. 65: p. 2344-2363.
    66. S. F. Jones, G. M. Evans, and K. P. Galvin, Bubble nucleation from gas cavities — a review. Advances in Colloid and Interface Science, 1999. 80: p. 27-50.
    67. J. S. Colton, and N. P. Suh, Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987. 27: p. 500-503.
    68. J. S. Colton, and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987. 27: p. 485-492.
    69. J. S. Colton, and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polymer Engineering and Science, 1987. 27: p. 493-499.
    70. S. D. Lubetkin, Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir, 2003. 19: p. 2575-2587.
    71. S. N. Leung, C. B. Park, and H. Li, Numerical simulation of polymeric foaming processes using modified nucleation theory. Plastics, Rubber and Composites, 2006. 35: p. 93-100.
    72. S. N. Leung, C. B. Park, and H. Li, Effects of nucleating agents shapes and interfacial properties on cell nucleation. Journal of Cellular Plastics, 2010. 46: p. 441-460.
    73. R. H. Hansen, and W. M. Martin, Novel methods for the production of foamed polymers. nucleation of dissolved gas by localized hot spots. Industrial & Engineering Chemistry Product Research and Development, 1964. 3: p. 137-141.
    74. R. H. Hansen, and W. M. Martin, Novel methods for the production of foamed polymers ii. nucleation of dissolved gas by finely-divided metals. Journal of Polymer Science Part B: Polymer Letters, 1965. 3: p. 325-330.
    75. S. N. Leung, A. Wong, C. B. Park, J. H. Zong, Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2008. 108: p. 3997-4003.
    76. S. N. Leung, A. Wong, L. C. Wang, and C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    77. A. S. Altorbaq, A. A. Krauskopf, X. Wen, R. A. Pérez-Camargo, Y. Su, D. Wang, A. J. Müller, S. K. Kumar, Crystallization kinetics and nanoparticle ordering in semicrystalline polymer nanocomposites. Progress in Polymer Science, 2022. 128.
    78. L. Chen, K. Blizard, R. Straff, X. Wang, Effect of filler size on cell nucleation during foaming process. Journal of Cellular Plastics, 2002. 38: p. 139-148.
    79. R. B. McClurg, Design criteria for ideal foam nucleating agents. Chemical Engineering Science, 2004. 59 (24): p. 5779-5786.
    80. L. Sun, W. J. Boo, H-J. Sue, Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New Journal of Chemistry, 2007. 31: p. 39-43.
    81. N. H. Fletcher, Size Effect in heterogeneous nucleation. The Journal of Chemical Physics, 1958. 29: p. 572-576.
    82. P. Mondal, and D. V. Khakhar, Hydraulic resistance of rigid polyurethane foams. II. Effect of variation of surfactant, water, and nucleating agent concentrations on foam structure and properties. Journal of Applied Polymer Science, 2004. 93: p. 2830-2837.
    83. S. Siripurapu, J. M. DeSimone, S. A. Khan and R. J. Spontak, Controlled foaming of polymer films through restricted surface diffusion and the addition of nanosilica particles or CO2-philic surfactants. Macromolecules, 2005. 38 (6): p. 2271-2280.
    84. W. Zhai, J. Yu, L. Wu, W. Ma, J. He, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer, 2006. 47 (21): p. 7580-7589.
    85. K. Goren, L. Chen, L. S. Schadler, R. Ozisik, Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. Journal of Supercritical Fluids, 2010. 51 (3): p. 420-427.
    86. H. Janani, and M. H. N. Famili, Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers. Polymer Engineering & Science, 2010. 50 (8): p. 1558-1570.
    87. M. H. N. Famili, H. Janani, and M. S. Enayati, Foaming of a polymer-nanoparticle system: Effect of the particle properties. Journal of Applied Polymer Science, 2011. 119 (5): p. 2847-2856.
    88. S. E. Zakiyan, M. H. N. Famili, and M. Ako, Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles. Journal of Materials Science, 2014. 49 (18): p. 6225-6239.
    89. S. H. Lee, Y. Zhang, M. Kontopoulou, C. B. Park, A. Wong, W. Zhai, Optimization of dispersion of nanosilica particles in a PP matrix and their effect on foaming. International Polymer Processing, 2011. 26 (4): p. 388-398.
    90. W. Zhai, C. B. Park, and M. Kontopoulou, Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene heterophasic copolymer foams blown in continuous extrusion. Industrial and Engineering Chemistry Research, 2011. 50 (12): p. 7282-7289.
    91. L. Sorrentino, M. Aurilia, L. Cafiero, S. Iannace, Nanocomposite foams from high-performance thermoplastics. Journal of Applied Polymer Science, 2011. 122 (6): p. 3701-3710.
    92. S. S. Hwang, and P. P. Hsu, Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. Journal of Industrial and Engineering Chemistry, 2013. 19 (4): p. 1377-1383.
    93. G. Ji, W. Zhai, D. Lin, Q. Ren, W. Zheng, D. W. Jung, Microcellular foaming of poly (lactic acid)/silica nanocomposites in compressed CO2: Critical influence of crystallite size on cell morphology and foam expansion. Industrial and Engineering Chemistry Research, 2013. 52 (19): p. 6390-6398.
    94. J. Yang, Y. Zhang, S. Zheng, L. Huang, F. Chen, P. Fan, M. Zhong, Probing structure–heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide. The Journal of Supercritical Fluids, 2014. 95: p. 228-235.
    95. M. Nofar, Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Materials & Design, 2016. 101: p. 24-34.
    96. E. J. Jeong, C. K. Park, and S. H. Kim, Fabrication of microcellular polylactide/modified silica nanocomposite foams. Journal of Applied Polymer Science, 2020. 137 (17): p. 48616.
    97. E. Laguna-Gutierrez, C. Saiz-Arroyo, J.I. Velasco, M. A. Rodriguez-Perez, Low-density polyethylene/silica nanocomposite foams. Relationship between chemical composition, particle dispersion, cellular structure and physical properties. European Polymer Journal, 2016. 81: p. 173-185.
    98. J. Sun, J. Xu, Z. He, H. Ren, Y. Wang, L. Zhang, J-B. Bao, Role of nano silica in supercritical CO2 foaming of thermoplastic poly(vinyl alcohol) and its effect on cell structure and mechanical properties. European Polymer Journal, 2018. 105: p. 491-499.
    99. Y. Chen, C. Weng, Z. Wang, T. Maertens, P. Fan, F. Chen, M. Zhong, J. Tan, J. Yang, Preparation of polymeric foams with bimodal cell size: An application of heterogeneous nucleation effect of nanofillers. The Journal of Supercritical Fluids, 2019. 147: p. 107-115.
    100. G. J. Hu, and F. Feng, Effect of nanoparticles orientation on morphology of polymeric nanocomposite foams: preparation of foamed nanocomposite fibers by supercritical carbon dioxide. Polymer-Plastics Technology and Materials, 2020. 59 (13): p. 1407-1416.
    101. A. Wong, R. K. M. Chu, S. N. Leung, C. B. Park, and J. H. Zong, A batch foaming visualization system with extensional stress-inducing ability. Chemical Engineering Science, 2011. 66 (1): p. 55-63.
    102. C. Wang, S. N. Leung, M. Bussmann, W. T. Zhai, and C. B. Park, Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Industrial and Engineering Chemistry Research, 2010. 49 (24): p. 12783-12792.
    103. A. Tabatabaei, L. H. Mark, and C.B. Park, Visualization of polypropylene crystallites formed from a stressed melt in extrusion. Polymer, 2016. 101: p. 48-58.
    104. A. Tabatabaei, M. R. Barzegari, L.H. Mark, C.B. Park, Visualization of polypropylene's strain-induced crystallization under the influence of supercritical CO2 in extrusion. Polymer, 2017. 122: p. 312-322.
    105. A. Tabatabaei, and C.B. Park, In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. European Polymer Journal, 2017. 96: p. 505-519.
    106. A. Tabatabaei, M. R. Barzegari, M. Nofar, C. B. Park, In-situ visualization of polypropylene crystallization during extrusion. Polymer Testing, 2014. 33 (1): p. 57-63.
    107. K. Taki, D. Kitano, and M. Ohshima, Effect of growing crystalline phase on bubble nucleation in poly (L-lactide)/CO2 batch foaming. Industrial and Engineering Chemistry Research, 2011. 50 (6): p. 3247-3252.
    108. J. S. Chiou, J. W. Barlow, and D.R. Paul, Polymer crystallization induced by sorption of CO2 gas. Journal of Applied Polymer Science, 1985. 30 (9): p. 3911-3924.
    109. K. Mizoguchi, T. Hirose, Y. Naito, Y. Kamiya, CO2-induced crystallization of poly (ethylene terephthalate), Polymer, 1987. 28 (8): p. 1298-1302.
    110. S. M. Lambert, and M. E. Paulaitis, Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures. The Journal of Supercritical Fluids, 1991. 4 (1): p. 15-23.
    111. D. F. Baldwin, M. Shimbo, and N. P. Suh, The role of gas dissolution and induced crystallization during microcellular polymer processing: A study of poly (ethylene terephthalate) and carbon dioxide systems. Journal of Engineering Materials and Technology, 1995. 117 (1): p. 62-74.
    112. Z. Zhang, and Y. P. Handa, CO2-assisted melting of semicrystalline polymers. Macromolecules, 1997. 30 (26): p. 8505-8507.
    113. S. Baseri, M. Karimi, and M. Morshed, Study of structural changes and mesomorphic transitions of oriented poly(ethylene therephthalate) fibers in supercritical CO2. European Polymer Journal, 2012. 48 (4): p. 811-820.
    114. D. Li, T. Liu, L. Zhao, W. Yuan, Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE Journal, 2012. 58 (8): p. 2512-2523.
    115. E. Beckman, and R. S. Porter, Crystallization of bisphenol a polycarbonate induced by supercritical carbon dioxide. Journal of Polymer Science Part B: Polymer Physics, 1987. 25 (7): p. 1511-1517.
    116. S. Gross, G. Roberts, D. Kiserow, J. DeSimone, Crystallization and solid-state polymerization of poly(bisphenol A carbonate) facilitated by supercritical CO2. Macromolecules, 2000. 33 (1): p. 40-45.
    117. W. Zhai, J. Yu, W. Ma, J. He, Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polymer Engineering and Science, 2007. 47 (9): p. 1338-1343.
    118. G. Li, and C. B. Park, A new crystallization kinetics study of polycarbonate under high-pressure carbon dioxide and various crystallinization temperatures by using magnetic suspension balance. Journal of Applied Polymer Science, 2010. 118(5): p. 2898-2903.
    119. Y. Sun, M. Matsumoto, K. Kitashima, M. Haruki, S. I Kihara, S. Takishima, Solubility and diffusion coefficient of supercritical-CO2 in polycarbonate and CO2 induced crystallization of polycarbonate. The Journal of Supercritical Fluids, 2014. 95: p. 35-43.
    120. M. Nofar, and C. B. Park, Poly (lactic acid) foaming. Progress in Polymer Science, 2014. 39 (10): p. 1721-1741.
    121. Y. P. Handa, Z. Zhang, and J. Roovers, Compressed-gas-induced crystallization intert-butyl poly(ether ether ketone). Journal of Polymer Science Part B: Polymer Physics, 2001. 39 (13): p. 1505-1512.
    122. Y. P. Handa, S. Capowski, and M. O'Neill, Compressed-gas-induced plasticization of polymers. Thermochimica Acta, 1993. 226: p. 177-185.
    123. Y. P. Handa, J. Roovers, and F. Wang, Effect of thermal annealing and supercritical fluids on the crystallization behavior of methyl-substituted poly(aryl ether ether ketone). Macromolecules, 1994. 27 (19): p. 5511-5516.
    124. J. D. Schultze, I. A. D. Engelmann, M. Boehning, J. Springer, Influence of sorbed carbon dioxide on transition temperatures of poly(p-phenylene sulphide). Polymers for Advanced Technologies, 1991. 2 (3): p. 123-126.
    125. L. Li, T. Liu, L. Zhao, W. K. Yuan, CO2-induced crystal phase transition from form II to I in isotactic poly-1-butene. Macromolecules, 2009. 42 (6): p. 2286-2290.
    126. M. Takada, M. Tanigaki, and M. Ohshima, Effects of CO2 on crystallization kinetics of polypropylene. Polymer Engineering and Science, 2001. 41 (11): p. 1938-1946.
    127. M. Varma-Nair, P. Y. Handa, A.K. Mehta, P. Agarwal, Effect of compressed CO2 on crystallization and melting behavior of isotactic polypropylene. Thermochimica Acta, 2003. 396 (1): p. 57-65.
    128. J. B. Bao, T. Liu, L. Zhao, G. H. Hu, Carbon dioxide induced crystallization for toughening polypropylene. Industrial and Engineering Chemistry Research, 2011. 50 (16): p. 9632-9641.
    129. R. Zhang, X. Li, G. Cao, Y. Shi, H. Liu, W. Yuan, G. W. Roberts, Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO2: introducing pressure and temperature dependence into the avrami equation. Industrial & Engineering Chemistry Research, 2011. 50 (18): p. 10509-10515.
    130. S. Romero-Diez, M.S. Kweon, E.S. Kim, A. Gupta, X. Yan, G. Pehlert, C. B. Park, P. C. Lee, In situ visualization of crystal nucleation and growth behaviors of linear and long chain branched polypropylene under shear and CO2 pressure. Polymer, 2021. 213: p. 123215.
    131. Y. P. Handa, Z. Zhang, and B. Wong, Effect of compressed CO2 on phase transitions and polymorphism in syndiotactic polystyrene. Macromolecules, 1997. 30 (26): p. 8499-8504.
    132. Y. T. Shieh, T. T. Hsiao, and S. K. Chang, CO2 pressure effects on melting, crystallization, and morphology of poly (vinylidene fluoride). Polymer, 2006. 47 (16): p. 5929-5937.
    133. M. Nofar, B. Batı, E. B. Küçük, A. Jalali, Effect of soft segment molecular weight on the microcellular foaming behavior of TPU using supercritical CO2. The Journal of Supercritical Fluids, 2020. 160: p. 104816.
    134. P. Ghariniyat, and S. N. Leung, Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Composites Part B: Engineering, 2018. 143: p. 9-18.
    135. E. B. Huang, X. Liao, C. X. Zhao, C. B. Park, Q. Yang, G. X. Li, Effect of unexpected CO2’s phase transition on the high-pressure differential scanning calorimetry performance of various polymers. ACS Sustainable Chemistry & Engineering, 2016. 4 (3): p. 1810-1818.
    136. M. Nofar, A. Tabatabaei, A. Ameli, C. B. Park, Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer, 2013. 54 (23): p. 6471-6478.
    137. S. Ito, K. Matsunaga, M. Tajima, Y. Yoshida, Generation of microcellular polyurethane with supercritical carbon dioxide. Journal of Applied Polymer Science, 2007. 106 (6): p. 3581-3586.
    138. S. Sankarpandi, C. B. Park, and A. K. Ghosh, CO2-induced crystal engineering of polylactide and the development of a polymeric nacreous microstructure. Polymer International, 2017. 66 (11): p. 1587-1597.
    139. S. Sankarpandi, C. B. Park, and A. K. Ghosh, CO2-induced crystallization of polylactide and its self-templating ‘stack of coins’ crystalline microstructure. Polymer Engineering & Science, 2017. 57 (4): p. 365-373.
    140. S. Fakirov, Handbook of condensation thermoplastic elastomers. 2005, Weinheim: Wiley-VCH., p. 619.
    141. A. Pattanayak, and S. C. Jana, Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer, 2005. 46 (14): p. 5183-5193.
    142. M. R. Barzegari, N. Hossieny, D. Jahani, C. B. Park, Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams. Polymer, 2017. 114: p. 15-27.
    143. R. J. Koopmans, J. C. F. den Doelder, and A. N. Paquet, Modeling Foam Growth in Thermoplastics. Advanced Materials, 2000. 12 (23): p. 1873-1880.
    144. C. F. J. den Doelder, R. L. Sammler, R. J. Koopmans, A. N. Paquet, Modeling Foam Growth in Semi-Crystalline Thermoplastics. Cellular Polymers, 2002. 21: p. 99-116.
    145. C. T. Yang, and S. T. Lee, Dimensional stability analysis of foams based on LDPE and ethylene–styrene interpolymer blends. Journal of Cellular Plastics, 2003. 39 (1): p. 59-69.
    146. M, Keshtkar, M, Nofar, C. B. Park, P. J. Carreau, Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer, 2014. 55 (16): p. 4077-4090.
    147. B. J. Briscoe, and T. Savvas, Gas diffusion in dense poly(ethylene) foams. Advances in Polymer Technology, 1998. 17 (2): p. 87-106.
    148. W. Wang, X. Liao, Y. He, J. Li, Q. Jiang, G. Li, Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2020. 163: p. 104861
    149. D. Zhao, G. Wang, and M. Wang, Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Journal of Applied Polymer Science, 2018. 135 (25): p.1-11
    150. H. Zhang, Z. Fang, T. Liu, B. Li, H. Li, Z. Cao, G. Jin, L. Zhao, Z. Xin, Dimensional stability of LDPE foams with CO2 + i-C4H10 mixtures as blowing agent: experimental and numerical simulation. Industrial & Engineering Chemistry Research, 2019. 58 (29): p. 13154-13162.
    151. H. Zhang, T. Liu, B. Li, H. Li, Z. Cao, G. Jin, L. Zhao, Z. Xin, Anti-shrinking foaming of polyethylene with CO2 as blowing agent. The Journal of Supercritical Fluids, 2020. 163: p. 104883
    152. C. Zhao, L. H. Mark, S. Kim, E. Chang, C. B. Park, P. C. Lee, Recent progress in micro‐/nano‐fibrillar reinforced polymeric composite foams. Polymer Engineering & Science, 2021. 61: p. 926– 941.
    153. S. Costeux, CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131 (23): p. 41293
    154. T. Standau, C. Zhao, S. Murillo Castellon, C. Bonten, V. Altstadt, Chemical Modification and Foam Processing of Polylactide (PLA). Polymers (Basel), 2019. 11(2): p.1-39.
    155. K. Nadella, V. Kumar, and W. Li, Constrained solid-state foaming of microcellular panels. Cellular Polymers, 2005. 24 (2): p. 71-90.
    156. B. Notario, J. Pinto, and M.A. Rodríguez-Pérez, Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer, 2015. 63: p. 116-126.
    157. K. F. Gebremedhin, P. C. Tseng, N. M. Demewoz, S. K Yeh, Scalable fabrication of anisotropic nanocellular foam by hot-press foaming. Industrial & Engineering Chemistry Research, 2022. 6 (32): p. 11790-11803.
    158. S. K. Yeh, Z. E. Liao, K. C. Wang, Y. T. Ho, V. Kurniawan, P. C. Tseng, T. W. Tseng, Effect of molecular weight to the structure of nanocellular foams: Phase separation approach. Polymer, 2020. 191: p. 122275.
    159. S. K. Yeh, N. M. Demewoz, and V. Kurniawan, Controlling the structure and density of PMMA bimodal nanocellular foam by blending different molecular weights. Polymer Testing, 2021. 93: p. 107004.
    160. S. K. Yeh, Y. R. Chen, T. W. Kang, T. J. Tseng, S. P. Peng, C. C. Chu, S. P. Rwei, W. J. Guo, Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. Journal of Polymer Research, 2017. 25 (1): p. 30.
    161. R. P. Juntunen, V. Kumar, and J. E. Weller, Impact strength of high density microcellular poly (vinyl chloride) foams. Journal of Vinyl & Additive Technology, 2000. 6 (2): p. 93-99.
    162. J. Ludwiczak, S. Frąckowiak, and R. Łużny, Effect of recycling on the cellular structure of polylactide in a batch process. Cellular Polymers, 2018. 37 (2): p. 69-79.
    163. D. Dörr, J. Kuhnigk, and V. Altstädt “Bead Foams” in polymeric foams: innovations in technologies and environmentally friendly materials. 1st ed, edited by S. T. Lee. 2022, Boca Raton, FL: CRC Press.
    164. Y. T. Guo, N. Hossieny, R. K. M. Chu, C. B. Park, N. Q. Zhou, Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chemical Engineering Journal, 2013. 214: p. 180-188.
    165. J. Rossacci, and S. Shivkumar, Bead fusion in polystyrene foams. Journal of Materials Science, 2003. 38 (2): p. 201-206.
    166. C. Ge, Q. Ren, S. Wang, W. Zheng, W. Zhai, C. B. Park, Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chemical Engineering Science, 2017. 174: p. 337-346.
    167. N. Hossieny, A. Ameli, and C. B. Park, Characterization of expanded polypropylene bead foams with modified steam-chest molding. Industrial & Engineering Chemistry Research, 2013. 52 (24): p. 8236-8247.
    168. W. Zhai, Y. W. Kim, and C. B. Park, Steam-chest molding of expanded polypropylene foams. 1. DSC simulation of bead foam processing. Industrial and Engineering Chemistry Research, 2010. 49 (20): p. 9822-9829.
    169. R. Pop-Iliev, G. M. Rizvi, and C. B. Park, The importance of timely polymer sintering while processing polypropylene foams in rotational molding. Polymer Engineering and Science, 2003. 43 (1): p. 40-54.
    170. R. Pop-Iliev, K. H. Lee, and C. B. Park, Manufacture of integral skin PP foam composites in rotational molding. Journal of Cellular Plastics, 2006. 42 (2): p. 139-152.
    171. X. Jiang, L. Zhao, L. Feng, C. Chen, Microcellular thermoplastic polyurethanes and their flexible properties prepared by mold foaming process with supercritical CO2. Journal of Cellular Plastics, 2019. 55 (6): p. 615-631.
    172. F. A. Shutov, Foamed polymers. cellular structure and properties. in Industrial Developments. 1983. Berlin, Heidelberg: Springer Berlin Heidelberg.
    173. V. Srivastava, and R. Srivastava, On the polymeric foams: modeling and properties. Journal of Materials Science, 2014. 49 (7): p. 2681-2692.
    174. A. H. Landrock, Handbook of plastic foams: types, properties, manufacture, and applications. 1995, Park Ridge, N. J., U. S. A : Noyes Publications. p. 488
    175. S. E. Jose Luis Ruiz‐Herrero, M. A. Rodríguez‐Perez, Polymeric Foams, in Kirk‐Othmer Encyclopedia of Chemical Technology. 2017. p. 1-39.
    176. L. J. Gibson, and M. F. Ashby, Cellular solids: structure and properties. 2nd ed. Cambridge solid state science series. 1997, Cambridge; New York: Cambridge University Press. p. 510
    177. M. H. Ozkul, J. E. Mark, and J. H. Aubert, The elastic and plastic mechanical responses of microcellular foams. Journal of Applied Polymer Science, 1993. 48 (5): p. 767-774.
    178. F. Saint-Michel, J. Y. Cavaillé, E. Chabert, Mechanical properties of high-density polyurethane foams: I. Effect of the density. Composites Science and Technology, 2006. 66 (15): p. 2700-2708.
    179. M. Yuan, and L. S. Turng, Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer, 2005. 46 (18): p. 7273-7292.
    180. S. Wong, H. E. Naguib, and C. B. Park, Effect of processing parameters on the cellular morphology and mechanical properties of thermoplastic polyolefin (TPO) microcellular foams. Advances in Polymer Technology, 2007. 26 (4): p. 232-246.
    181. M. Santiago-Calvo, J. Tirado-Mediavilla, J. C. Rauhe, L. R. Jensen, J. L. Ruiz-Herrero, F. Villafañe, M. Á Rodríguez-Pérez, Evaluation of the thermal conductivity and mechanical properties of water blown polyurethane rigid foams reinforced with carbon nanofibers. European Polymer Journal, 2018. 108: p. 98-106.
    182. J. Jiang, F. Liu, B. Chen, Y. Li, X. Yang, F. Tian, D. Xu, W. Zhai, Microstructure development of PEBA and its impact on autoclave foaming behavior and inter-bead bonding of EPEBA beads. Polymer, 2022: p. 125244.
    183. J. Jiang, F. X. Liu, Yang, Z. Xiong, H. Liu, D. Xu, W. Zhai, Evolution of ordered structure of TPU in high-elastic state and their influences on the autoclave foaming of TPU and inter-bead bonding of expanded TPU beads. Polymer, 2021. 228: p. 123872.
    184. Z. Xu, G. Wang, J. Zhao, A. Zhang, G. Zhao, Super-elastic and structure-tunable poly(ether-block-amide) foams achieved by microcellular foaming. Journal of CO2 Utilization, 2022. 55: p.101807
    185. W. P. Zhong, Z. Yu, T. Zhu, Y. Zhao, A. D. Phule, Z. X. Zhang, Influence of different ratio of CO2/N2 and foaming additives on supercritical foaming of expanded thermoplastic polyurethane. Express Polymer Letters, 2022. 16 (3): p. 318-336.
    186. G. Wang, J. Liu, J. Zhao, S. Li, G. Zhao, C. B. Park, Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming. The Journal of Supercritical Fluids, 2022. 188: p.105667
    187. Y. Wang, J. Li, Y. Xie, J. Hu, X. Zhu, S. Sun, X. Jing, H. Y. Mi, C. Liu, Shen, C. Fabrication of wrinkled thermoplastic polyurethane foams by dynamic supercritical carbon dioxide foaming. The Journal of Supercritical Fluids, 2022. 180: p. 105429.
    188. J. Hu, R. Gu, H.-Y. Mi, X. Jing, M. F. Antwi-Afari, B. Dong, C. Liu, C. Shen, Self-reinforced thermoplastic polyurethane wrinkled foams with high energy absorption realized by gas cooling assisted supercritical CO2 foaming. Industrial & Engineering Chemistry Research, 2022. 61(14): p. 4832-4841.
    189. I. Sánchez-Calderón, B. Merillas, V. Bernardo, M. Á. Rodríguez-Pérez, Methodology for measuring the thermal conductivity of insulating samples with small dimensions by heat flow meter technique. Journal of Thermal Analysis and Calorimetry, 2022. 147: p.12523–12533
    190. S. Liu, J. Duvigneau, and G. J. Vancso, Nanocellular polymer foams as promising high-performance thermal insulation materials. European Polymer Journal, 2015. 65: p. 33-45.
    191. L. Doyle, I. Weidlich, and E. Di Maio, Developing insulating polymeric foams: strategies and research needs from a circular economy perspective. Materials (Basel), 2022. 15 (18): p.6212.
    192. C. V. Vo, and R. T. Fox, Assessment of hydrofluoropropenes as insulating blowing agents for extruded polystyrene foams. Journal of Cellular Plastics, 2013. 49 (5): p. 423-438.
    193. B. Merillas, J. P. Vareda, J. Martín-De León, M. Á. Rodríguez-Pérez, L. Durães, Thermal conductivity of nanoporous materials: Where is the limit? Polymers, 2022. 14 (13): p.1-23.
    194. B. Notario, J. Pinto, E. Solorzano, J. A. de Saja, M. Dumon, M. A. Rodríguez-P´erez, Experimental validation of the Knudsen effect in nano cellular polymeric foams. Polymer, 2015. 56: p. 57-67.
    195. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda and P. Sonntag, Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science, 2015. 41: p. 122-145.
    196. V. Bernardo, J. Martin-de Leon, J. Pinto, R. Verdejo and M. A. Rodriguez-Perez, Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer, 2019. 160: p. 126-137.
    197. M. Zulkarnain, R. W. Sharudin, and M. Ohshima, Towards understanding of pore properties of polystyrene-b-polybutadiene-b-polystyrene (SEBS) foam effect on thermal conductivity using numerical analysis. International Journal of Technology, 2022. 13 (3): p. 533-543.
    198. M. Tomin, and Á. Kmetty, Polymer foams as advanced energy absorbing materials for sports applications—A review. Journal of Applied Polymer Science, 2022. 139 (9): p. 51714.
    199. J. L. Ruiz-Herrero, S. Estravis, and M. A. Rodríguez-Perez, Polymeric foams, in Kirk-Othmer Encyclopedia of Chemical Technology. 2017, John Wiley & Sons, Inc.
    200. B. J. Ramirez, and V. Gupta, Evaluation of novel temperature-stable viscoelastic polyurea foams as helmet liner materials. Materials and Design, 2018. 137: p. 298-304.
    201. L. Jaouen, A. Renault, and M. Deverge, Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam. Applied Acoustics, 2008. 69 (12): p. 1129-1140.
    202. B. Merillas, F. Villafañe, and M. Á. Rodríguez-Pérez, A new methodology based on cell-wall hole analysis for the structure-acoustic absorption correlation on polyurethane foams. Polymers, 2022. 14 (9): p.1-10.
    203. E. Mester, D. Pecsmány, K. Jálics, Á. Filep, M. Varga, K. Gráczer, B. Viskolcz, B. Fiser, Exploring the potential to repurpose flexible moulded polyurethane foams as acoustic insulators. Polymers, 2022. 14 (1): p. 163.
    204. S. Abdollahi Baghban, M. Khorasani, and G. Mir Mohamad Sadeghi, Soundproofing flexible polyurethane foams: Effect of chemical structure of chain extenders on micro-phase separation and acoustic damping. Journal of Cellular Plastics, 2019. 56 (2): p. 167-185.
    205. J.M. Kim, D.H. Kim, J.-W. Kim, J. W. Lee, W. N. Kim, Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromolecular Research, 2017. 25: p. 190-196.
    206. B. Wu, H. Wang, Y. Chen, Z. Wang, T. Maertens, T. Kuang, P. Fan, F. Chen, M. Zhong, J. Tan, J. Yang, Preparation and properties of thermoplastic polyurethane foams with bimodal structure based on TPU/PDMS blends. The Journal of Supercritical Fluids, 2021. 177: p. 105324.
    207. A. Prasad, G. Fotou, and S. Li, The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads. Journal of Materials Research, 2013. 28 (17): p. 2380-2393.
    208. H. Haugen, J. Will, W. Fuchs, E. Wintermantel, A novel processing method for injection-molded polyether-urethane scaffolds. Part 1: processing. Journal of Biomedical Materials Research, 2006. 77 (1): p. 65-72.
    209. H. Haugen, J. Aigner, M. Brunner, E. Wintermantel, A novel processing method for injection-molded polyether-urethane scaffolds. Part 2: cellular interactions. Journal of Biomedical Materials Research, 2006. 77 (1): p. 73-8.
    210. S. Leicher, J. Will, H. Haugen, E. Wintermantel, MuCell® technology for injection molding: A processing method for polyether-urethane scaffolds. Journal of Materials Science, 2005. 40 (17): p. 4613-4618.
    211. B. Lan, P. Li, X. Luo, H. Luo, Q. Yang, P. Gong, Hydrogen bonding and topological network effects on optimizing thermoplastic polyurethane/organic montmorillonite nanocomposite foam. Polymer, 2021. 212: p. 123159.
    212. J. Xu, L. Cheng, Z. Zhang, L. Zhang, C. Xiong, W. Huang, Y. Xie, L. Yang, Highly exfoliated montmorillonite clay reinforced thermoplastic polyurethane elastomer: in situ preparation and efficient strengthening. RSC Advances, 2019. 9 (15): p. 8184-8196.
    213. I. Yilgör, E. Yilgör, and G. L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015. 58: p. A1-A36.
    214. Popular application of TPUs https://omnexus.specialchem.com/selection-guide/thermoplastic-polyurethanes-tpu/key-applications.
    215. S. K. Yeh, Y. C. Liu, W. Z. Wu, K. C. Chang, W. J. Guo, S. F. Wang, Thermoplastic polyurethane/clay nanocomposite foam made by batch foaming. Journal of Cellular Plastics, 2013. 49 (2): p. 119-130.
    216. C. C. Chu, S. K. Yeh, S. P. Peng, T. W. Kang, W. J. Guo, J. Yang, Preparation of microporous thermoplastic polyurethane by low-temperature supercritical CO2 foaming. Journal of Cellular Plastics, 2017. 53 (2): p. 135-150.
    217. A. Hammas, G. Lecomte-Nana, I. Daou, N. Tessier-Doyen, C. Peyratout, F. Zibouche, Kaolinite-magnesite or kaolinite–talc-based ceramics. Part II: Microstructure and the final properties related sintered tapes. Minerals, 2020. 10 (12): p. 1080.
    218. G. Zhao, T. Wang, and Q. Wang, Studies on wettability, mechanical and tribological properties of the polyurethane composites filled with talc. Applied Surface Science, 2012. 258 (8): p. 3557-3564.
    219. C. Okolieocha, F. Beckert, M. Herling, J. Breu, R. Mülhaupt, V. Altstädt, Preparation of microcellular low-density PMMA nanocomposite foams: Influence of different fillers on the mechanical, rheological and cell morphological properties. Composites Science and Technology, 2015. 118: p. 108-116.
    220. O. W. Flörke, H. A. Graetsch, F. Brunk, L. Benda, S. Paschen, H. E. Bergna, W. O. Roberts, W. A. Welsh, C. Libanati, M. Ettlinger, D. Kerner, M. Maier, W. Meon, R. Schmoll, H. Gies, D. Schiffmann, Silica, in Ullmann's Encyclopedia of Industrial Chemistry. 2008.
    221. Evonik, aerosil fumed silica technical overview.
    222. S. H. Soh, and L. Y. Lee, Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques. Pharmaceutics, 2019. 11 (1): p. 21.
    223. N. P. Stadie, E. Callini, P. Mauron, A. Borgschulte, A. Züttel, Supercritical nitrogen processing for the purification of reactive porous materials. Journal of Visualized Experiments, 2015 (99): p. e52817.
    224. J. P. Singh, and S. Verma, Chapter -3 Raw materials for terry fabrics in Woven Terry Fabrics. Woodhead Publishing: 2017. 184: p. 19-28.
    225. V. Kumar, and N. P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 3 (20): p. 1323-1329.
    226. B. E. Obi, Chapter 5-Fundamentals of polymeric foams and classification of foam types, in polymeric foams structure-property-performance. 2018. p. 93-129.
    227. C. B. Park, V. Padareva, P. C. Lee, H. E. Naguib, Extruded open-celled LDPE-based foams using non-homogeneous melt structure. Journal of Polymer Engineering, 2005. 25 (3): p. 239-260.
    228. P. Mahallati and D. Rodrigue, Thermoplastic elastomer foams based on recycled rubber. Cellular Polymers, 2014. 33 (5): p. 233-248.
    229. C. Prisacariu, Polyurethane elastomers from morphology to mechanical aspects. 2011, Springer: New York. p. 255.
    230. K. E. Kear, Developments in thermoplastic elastomers. 2003: Rapra Technology.
    231. B. J. Ramirez, and V. Gupta, Energy absorption and low velocity impact response of open-cell polyurea foams. Journal of Dynamic Behavior of Materials, 2019. 5 (2): p. 132-142.
    232. X. Wang, J. Mi, H. Zhou, X. Wang, Transition from microcellular to nanocellular chain extended poly (lactic acid)/hydroxyl-functionalized graphene foams by supercritical CO2. Journal of Materials Science, 2018. 54 (5): p. 3863-3877.
    233. S. K. Yeh, J. Yang, N. R. Chiou, T. Daniel, L. J. Lee, Introducing water as a co blowing agent in the carbon dioxide extrusion foaming process for polystyrene thermal insulation foams. Polymer Engineering & Science, 2010. 50 (8): p. 1577-1584.
    234. M. Perez-Blanco, J. R. Hammons, and R. P. Danner, Measurement of the solubility and diffusivity of blowing agents in polystyrene. Journal of Applied Polymer Science, 2010. 116 (4): p. 2359-2365.
    235. S. Y. Huang, Thermal properties of thermoplastic polyurethanes foam composed with different soft segments, in Materials Science and Engineering. 2018, National Taiwan University of Science and Technology.
    236. T. H., Hsu, Foaming behavior of thermoplastic polyurethane with different hardness by supercritical CO2, in Department of Materials science and Engineering. 2018, National Taiwan University of Science and Technology.
    237. T. Hayashi, N. Koshita, M. Oikawa, Molded article of thermoplastic polyurethane foam particle sand method for manufacturing same and thermoplastic polyurethane foam particles. US20190153189A1
    238. M. Furukawa, Y. Mitsui, T. Fukumaru, K. Kojio, Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer, 2005. 46 (24): p. 10817-10822.
    239. K. Kojio, S. Nakashima, and M. Furukawa, Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer, 2007. 48 (4): p. 997-1004.
    240. T. Hayashi, M. Oikawa, N. Koshita, Thermoplastic polyurethane foaming particle and thermoplastic polyurethane foaming particle molded body. 2018. JP2018044042A
    241. S. E. Keinath, and R. F. Boyer, Thermomechanical analysis of Tg and T > Tg transitions in polystyrene. Journal of Applied Polymer Science, 1981. 26 (6): p. 2077-2085.
    242. R. W. Seymour, and S. L. Cooper, DSC studies of polyurethane block polymers. Journal of Polymer Science Part B: Polymer Letters, 1971. 9 (9): p. 689-694.
    243. R. W. Seymour, and S. L. Cooper, Thermal analysis of polyurethane block polymers. Macromolecules, 1973. 6 (1): p. 48-53.
    244. N. M. K. Lamba, K. A. Woodhouse, and S.L. Cooper, Polyurethanes in biomedical applications. 1998, Boca Raton: CRC Press. p.277
    245. T. K. Chen, J. Y. Chui, and T. S. Shieh, Glass transition behaviors of a polyurethane hard segment based on 4,4‘-diisocyanatodiphenylmethane and 1,4-butanediol and the calculation of microdomain composition. Macromolecules, 1997. 30 (17): p. 5068-5074.
    246. S. Abouzahr, G. L. Wilkes, and Z. Ophir, Structure-property behaviour of segmented polyether-MDI-butanediol based urethanes: effect of composition ratio. Polymer, 1982. 23 (7): p. 1077-1086.
    247. B. J. Briscoe, T. Savvas, and C. T. Kelly, “Explosive decompression failure” of rubbers: A review of the origins of pneumatic stress induced rupture in elastomers. Rubber Chemistry and Technology, 1994. 67 (3): p. 384-416.
    248. B. J. Briscoe, and S. Zakaria, Gas-induced damage in elastomeric composites. Journal of Materials Science, 1990. 25 (6): p. 3017-3023.
    249. L. Urbanczyk C. Calberg C. Detrembleur C. Jérôme, M. Alexandre, Batch foaming of SAN/clay nanocomposites with scCO2: A very tunable way of controlling the cellular morphology. Polymer, 2010. 51 (15): p. 3520-3531.
    250. M. N. Bureau, and V. Kumar, Fracture toughness of high density polycarbonate microcellular foams. Journal of Cellular Plastics, 2006. 42(3): p. 229-240.
    251. K. A. Seeler, and V. Kumar, Tension-tension fatigue of microcellular polycarbonate: initial results. Journal of Reinforced Plastics and Composites, 1993. 12 (3): p. 359-376.
    252. S. K. Yeh, C. H. Huang, C. C. Su, K. C. Cheng, T. H. Chuang, W. J. Guo, S. F. Wang, Effect of dispersion method and process variables on the properties of supercritical CO2 foamed polystyrene/graphite nanocomposite foam. Polymer Engineering and Science, 2013. 53 (10): p. 2061-2072.
    253. B. Krause, H. J. P. Sijbesma, P. Munuklu, N.F.A. van der Vegt, M. Wessling, Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules, 2001. 34 (25): p. 8792-8801.
    254. N. Koshita, K. Nishijima, M. Oikawa, Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article. 2016, US 20180155518 Al
    255. R. Li, J. H. Lee, C. Wang, L. H. Mark, C. B. Park, Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming. The Journal of Supercritical Fluids, 2019. 154: p. 10462.
    256. M. Guo, and Y. Peng, Study of shear nucleation theory in continuous microcellular foam extrusion. Polymer Testing, 2003. 22: p. 705-709.
    257. S. N. Leung, A. Wong, L. C. Wang, C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. The Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    258. C. W. Macosko, Rheology: principles, measurements, and applications. Advances in interfacial engineering series. 1994, New York: VCH. p.550.
    259. D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee, K.W. Koelling, A review of CO2 applications in the processing of polymers. Industrial & Engineering Chemistry Research, 2003. 42 (25): p. 6431-6456.
    260. Y. T. Shieh, J. H. Su, G. Manivannan, P. H. C. Lee, S. P. Sawan, W. D. Spall, Interaction of supercritical carbon dioxide with polymers .1. Crystalline polymers. Journal of Applied Polymer Science, 1996. 59 (4): p. 695-705.
    261. Y. T. Shieh, J. H. Su, G. Manivannan, P. H. C. Lee, S. P. Sawan, W. D. Spall, Interaction of supercritical carbon dioxide with polymers 2. Amorphous polymers. Journal of Applied Polymer Science, 1996. 59 (4): p. 707-717.
    262. K. H. Hsieh, C. C. Tsai, and D. M. Chang, Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. Journal of Membrane Science, 1991. 56 (3): p. 279-287.
    263. K. H. Hsieh, C. C. Tsai, and S. M. Tseng, Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. Journal of Membrane Science, 1990. 49 (3): p. 341-350.
    264. M. Amirkhosravi, L. Yue, T. Ju, I. Manas-Zloczower, Designing thermal annealing to control mechanical performance of thermoplastic polyurethane elastomers. Polymer, 2021. 214: p. 123254.
    265. M. W. Terban, R. Dabbous, A. D. Debellis, E. Pöselt, S. J. L. Billinge, Structures of hard phases in thermoplastic polyurethanes. Macromolecules, 2016. 49 (19): p. 7350-7358.
    266. J. A. Miller, S. B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson, S. L. Cooper, Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules, 1985. 18 (1): p. 32-44.
    267. J. Balko, B. Fernández-d’Arlasm, E. Pöselt, R. Dabbous, A. J. Müller, T. Thurn-Albrecht, Clarifying the origin of multiple melting of segmented thermoplastic polyurethanes by fast scanning calorimetry. Macromolecules, 2017. 50 (19): p. 7672-7680.
    268. R. J. Gaymans, Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Progress in Polymer Science, 2011. 36(6): p. 713-748.
    269. B. Fernández-d’Arlas, J. Balko, R. P. Baumann, E. Pöselt, R. Dabbous, B. Eling, T. Thurn Albrecht, A. J. Müller, Tailoring the morphology and melting points of segmented thermoplastic polyurethanes by self-nucleation. Macromolecules, 2016. 49(20): p. 7952-7964.
    270. J. W. C. Van Bogart, D. A. Bluemke, and S. L. Cooper, Annealing-induced morphological changes in segmented elastomers. Polymer, 1981. 22(10): p. 1428-1438.
    271. T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering & Science, 1980. 20 (3): p. 190-197.
    272. P. J. Yoon and C. D. Han, Effect of thermal history on the rheological behavior of thermoplastic polyurethanes. Macromolecules, 2000. 33: p. 2171-2183.
    273. Y. Yanagihara, N. Osaka, S. Murayama, H. Saito, Thermal annealing behavior and structure development of crystalline hard segment domain in a melt-quenched thermoplastic polyurethane. Polymer, 2013. 54 (8): p. 2183-2189.
    274. A. Saiani, A. Novak, L. Rodier, G. Eeckhaut, J. W. Leenslag, J. S. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane:  Effect of annealing temperature. Macromolecules, 2007. 40 (20): p. 7252-7262.
    275. T. K. Chen, T. S. Shieh, and J. Y. Chui, Studies on the first DSC endotherm of polyurethane hard segment based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules, 1998. 31(4): p. 1312-1320.
    276. D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. McCarthy, G. M. Renwick, The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS-DSC annealing study. Journal of Applied Polymer Science, 1997. 64 (4): p. 803-817.
    277. R. M. Briber, and E. L. Thomas, The structure of MDI/BDO-based polyurethanes: Diffraction studies on model compounds and oriented thin films. Journal of Polymer Science: Polymer Physics Edition, 1985. 23 (9): p. 1915-1932.
    278. B. Fernández-d’Arlas, R. P. Baumann, E. Pöselt, A.J. Müller, Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm, 2017. 19 (32): p. 4720-4733.
    279. J. Maiz, B. Fernández-D'Arlas, X. Li, J. Balko, E. Pöselt, R. Dabbous, T. Thurn-Albrecht, A. J. Müller, Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane. Polymer, 2019. 180: p. 121676.
    280. B. Fernández-d’Arlas, J. Maiz, R. A. Pérez‐Camargo, R.P. Baumann, E. Pöselt, R. Dabbous, A.Stribeck, A.J. Müller, SSA fractionation of thermoplastic polyurethanes. Polymer Crystallization, 2021. 4 (1):p.1-12.
    281. A. S. Lea, S. R. Higgins, K. G. Knauss, and K. M. Rosso, A high-pressure atomic force microscope for imaging in supercritical carbon dioxide. Review of Scientific Instruments, 2011. 82 (4): p. 043709.
    282. J. S. Park, H-T. Kim, J. D. Kim, J. H. Kim, S.-K. Kim, J-M. Lee, Eco‐friendly blowing agent, HCFO‐1233zd, for the synthesis of polyurethane foam as cryogenic insulation. Journal of Applied Polymer Science, 2022. 139 (2): p. 51492.
    283. A. Primel, J. Férec, G. Ausias, Y. Tirel, J.M. Veillé, Y. Grohens, Solubility and interfacial tension of thermoplastic polyurethane melt in supercritical carbon dioxide and nitrogen. The Journal of Supercritical Fluids, 2017. 122: p. 52-57.
    284. J. H. Lee, S. H. Mahmood, J. M. Pin, P. C. Lee, C. B. Park, Determination of CO2 solubility in semi-crystalline polylactic acid with consideration of rigid amorphous fraction. International Journal of Biological Macromolecules, 2022. 204: p. 274-283.
    285. G. Wang, J. Zhao, K. Yu, L. H. Mark, G. Wang, P. Gong, C. B. Park, G. Zhao, Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer, 2017. 119: p. 28-39.
    286. K. Matsunaga, K. Sato, M. Tajima, Y. Yoshida, Gas permeability of thermoplastic polyurethane elastomers. Polymer Journal, 2005. 37 (6): p. 413-417.
    287. A. Puentes‐Parodi, L. A. Santoro, I. Ferreira, A. Leuteritz, I. Kuehnert, Influence of annealing on the permeation properties of a thermoplastic elastomer. Polymer Engineering & Science, 2019. 59 (9): p. 1810-1817.
    288. J. Crank, The mathematics of diffusion. 2d ed. 1975, Oxford, Clarendon Press. viii, 414 p.
    289. L. M. Leung, and J. T. Koberstein, DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules, 1986. 19 (3): p. 706-713.
    290. J. T. Koberstein, and A. F. Galambos, Multiple melting in segmented polyurethane block copolymers. Macromolecules, 1992. 25 (21): p. 5618-5624.
    291. A. Saiani, W. A. Daunch, H. Verbeke, J. W. Leenslag, J. S. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules, 2001. 34 (26): p. 9059-9068.
    292. J. Blackwell, and C. D. Lee, Hard-segment polymorphism in MDI/diol-based polyurethane elastomers. Journal of Polymer Science: Polymer Physics Edition, 1984. 22 (4): p. 759-772.
    293. R. M. Briber, and E. L. Thomas, Investigation of two crystal forms in MDI/BDO-based polyurethanes. Journal of Macromolecular Science, Part B, 1983. 22 (4): p. 509-528.
    294. J. T. Koberstein and, T. P. Russell, Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules, 1986. 19 (3): p. 714-720.
    295. M. B. Karimi, G. Khanbabaei, G. Mir Mohamad Sadeghi, A. Jafari, Effect of nano-silica on gas permeation properties of polyether-based polyurethane membrane in the presence of esterified canola oil diol as a nucleation agent for hard segments. Journal of Applied Polymer Science, 2018. 135 (11): p. 45979.
    296. G. Galland, and T. M. Lam, Permeability and diffusion of gases in segmented polyurethanes: Structure–properties relations. Journal of Applied Polymer Science, 1993. 50 (6): p. 1041-1058.
    297. A. Wolińska-Grabczyk, and A. Jankowski, Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Separation and Purification Technology, 2007. 57 (3): p. 413-417.
    298. B. Wunderlich, Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Progress in Polymer Science, 2003. 28 (3): p. 383-450.
    299. J. Lin, S. Shenogin, and S. Nazarenko, Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephthalate). Polymer, 2002. 43 (17): p. 4733-4743.
    300. W. P. Zhong, Z. Yu, T. Zhu, Y. Zhao, A. D. Phule, Z. X. Zhang, Influence of different ratio of CO2/N2 and foaming additives on supercritical foaming of expanded thermoplastic polyurethane. Express Polymer Letters, 2022. 16: p. 318-336.
    301. Z. Zhang, and Y. P. Handa, CO2-assisted melting of semicrystalline polymers. Macromolecules, 1997. 30 (26): p. 8505-8507.
    302. P. Zoller, The pressure–volume–temperature properties of three well-characterized low-density polyethylenes. Journal of Applied Polymer Science, 1979. 23 (4): p. 1051-1056.
    303. P. Zoller, and Y. A. Fakhreddine, Pressure—volume—temperature studies of semi-crystalline polymers. Thermochimica Acta, 1994. 238: p. 397-415.
    304. F. Stan, C. Fetecau, N. V. Stanciuet, R. T. Rosculet, L. I. Sandu, Investigation of structure-property relationships in thermoplastic polyurethane / multiwalled carbon nanotube composites. in ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. 2017.
    305. G. Li, J. Wang, C.B. Park, R. Simha, Measurement of gas solubility in linear/branched PP melts. Journal of Polymer Science, Part B: Polymer Physics, 2007. 45 (17): p. 2497-2508.
    306. G. Li, F. Gunkel, J. Wang, C. B. Park, V. Altstädt, Solubility measurements of N2 and CO2 in polypropylene and ethene/octene copolymer. Journal of Applied Polymer Science, 2007. 103(5): p. 2945-2953.
    307. Y. Sato, K. Fujiwara, T. Takikawa, Sumarno, S. Takishima, H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 1999. 162 (1-2): p. 261-276.
    308. I. Ushiki, S. Hayashi, S. I. Kihara, S. Takishima, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in poly (methyl methacrylate) at high temperatures and pressures. The Journal of Supercritical Fluids, 2019. 152: p.104565.
    309. J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Solubilities and diffusivities of nitrogen in polyethylene. Journal of Applied Physics, 1960. 31 (6): p. 1131-1132.
    310. E. B. Atkinson, The solubility of nitrogen in polyethylene above the crystalline melting point at high pressure. 1977. 15 (5): p. 795-804.
    311. Y. L. Cheng, and D. C. Bonner, Solubility of nitrogen and ethylene in molten, low-density polyethylene to 69 atmospheres. Journal of Polymer Science: Polymer Physics Edition, 1978. 16 (2): p. 319-333.
    312. B. Sebok, M. Schülke, F. Réti, G. Kiss, Diffusivity, permeability and solubility of H2, Ar, N2, and CO2 in poly(tetrafluoroethylene) between room temperature and 180°C. Polymer Testing, 2016. 49: p. 66-72.
    313. S. Hilic, S. A. E. Boyer, A. A. H. Pádua, J. P. E. Grolier, Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. Journal of Polymer Science Part B: Polymer Physics, 2001. 39 (17): p. 2063-2070.
    314. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, H. Masuoka, Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 1996. 125 (1-2): p. 129-138.
    315. F. Liu, S. Li, X. Liao, Q. Peng, G. Li, Investigation on the crystallization behavior and detail spherulitic morphology of two crystal forms of thermoplastic polyurethanes. Journal of Polymer Research, 2022. 29 (7):p.1-10.
    316. M. Nofar, M. Mohammadi, and P. J. Carreau, Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. Journal of Applied Polymer Science, 2020. 137(45): p. 49387.
    317. J. Zhao, G. Wang, Z. Xu, A. Zhang, G. Dong, G. Zhao, C. B. Park, Ultra-elastic and super-insulating biomass PEBA nanoporous foams achieved by combining in-situ fibrillation with microcellular foaming. Journal of CO2 Utilization, 2022. 57: p. 101891.
    318. B. J. Briscoe, and S. Zakaria, Sorption and dilation of silicone elastomer composites at high gas pressures: The role of interfacial quality. Journal of Polymer Science Part B: Polymer Physics, 1992. 30 (9): p. 959-969.
    319. S. Zakaria, Gas-polymer interaction at high pressures, in Chemical Engineering and Chemical Technology. 1990, Imperial College London.
    320. D. I. Collias, and D. G. Baird, Impact behavior of microcellular foams of polystyrene and styrene-acrylonitrile copolymer, and single-edge-notched tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and palycarbonate. Polymer Engineering & Science, 1995. 35 (14): p. 1178-1183.
    321. S. K. Yeh, R. Rangappa, T. H. Hsu, S. Utomo, Effect of extrusion on the foaming behavior of thermoplastic polyurethane with different hard segments. Journal of Polymer Research, 2021. 28 (7): p. 244.
    322. O. Masaharu, K. N. Nobumasa Koshita, H. Tatsuya, Thermoplastic polyurethane foamed particles and method for manufacturing thermoplastic polyurethane foamed particle molded article 2019. US 2019/0100640 Al
    323. M. R. Di Caprio, B. Immirzi, E. Di Maio, S. Cavalca, V. Parenti, S. Iannace, G. Mensitieri, Mass transport and physical properties of polymeric methylene diphenyl diisocyanate/CO2 solutions. Fluid Phase Equilibria, 2018. 456: p. 116-123.
    324. M. R. Di Caprio, G. Dal Poggetto, M. G. Pastore Carbone, E. Di Maio, S. Cavalca, V. Parenti, S. Iannace, Polyether polyol/CO2 solutions: Solubility, mutual diffusivity, specific volume and interfacial tension by coupled gravimetry-Axisymmetric Drop Shape Analysis. Fluid Phase Equilibria, 2016. 425: p. 342-350.
    325. Z. H. Guo, S. K. Yeh, M. J. Wingert, J. L. Ellis, D. L. Tomasko, L. J. Lee, Comparison of nanoclay and carbon nanofiber particles on rheology of molten polystyrene nanocomposites under supercritical carbon dioxide. Journal of Applied Polymer Science, 2010. 116 (2): p. 1068-1076.
    326. R. Rangappa, and S. K. Yeh, Effect of N2 plasticization on the crystallization of different hardnesses of thermoplastic polyurethanes. The Journal of Supercritical Fluids, 2022. 189: p. 105726.
    327. K. Taki, Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chemical Engineering Science, 2008. 63 (14): p. 3643-3653.
    328. C. Ge, S. Wang, W. Zheng, W. Zhai, Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property. Polymer Engineering and Science, 2018. 58: p. E158-E166.
    329. S. G. Kim, C. B. Park, B. S. Kang, M. Sain, Foamability of thermoplastic vulcanizates (TPVs) with carbon dioxide and nitrogen. Cellular Polymers, 2006. 25 (1): p. 19-33.
    330. E. Di Maio, G. Mensitieri, S. Iannace, L. Nicolais, W. Li, R. W. Flumerfelt, Structure optimization of polycaprolactone foams by using mixtures of CO2 and N2 as blowing agents. Polymer Engineering and Science, 2005. 45 (3): p. 432-441.
    331. S. N. Leung, A. Wong, Q. Guo, C. B. Park, J. H. Zong, Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009. 64 (23): p. 4899-4907.
    332. L. J. Gibson, and M. F. Ashby, Mechanics of three-dimensional cellular materials. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1982. 382 (1782): p. 43-59.
    333. J. Martín-de León, F. Van Loock, V. Bernardo, N. A. Fleck, M. Á. Rodríguez-Pérez, The influence of cell size on the mechanical properties of nanocellular PMMA. Polymer, 2019. 181: p. 121805.
    334. Y. Pang, Y. Cao, W. Zheng, C. B. Park, A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chemical Engineering Journal, 2022. 430: p. 132662.
    335. J. E. Weller, and V. Kumar, Solid-State Microcellular Polycarbonate Foams. II. The Effect of Cell Size on Tensile Properties. Polymer Engineering and Science, 2010. 50(11): p. 2170-2175.
    336. J. Zhao, C. Wei, G. Wang, S. Li, A. Zhang, G. Dong, G. Zhao, Miscible polymethyl methacrylate/polylactide blend with enhanced foaming behavior and foam mechanical properties. Journal of CO2 Utilization, 2022. 61: p. 102065
    337. V. Kumar, M. VanderWel, J. Weller and K. A. Seeler, Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994. 116 (4): p. 439-445.
    338. H. Y. Mi, Z. Li, L. S. Turng, Y. Sun, S. Gong, Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties. Materials and Design, 2014. 56: p. 398-404.
    339. S. Roy, S. K. Srivastava, J. Pionteck, V. Mittal, Montmorillonite-multiwalled carbon nanotube nanoarchitecture reinforced thermoplastic polyurethane. Polymer Composites, 2016. 37 (6): p. 1775-1785.
    340. A. Shirole, A. Nicharat, C. U. Perotto, and C. Weder, Tailoring the Properties of a Shape-Memory Polyurethane via Nanocomposite Formation and Nucleation. Macromolecules, 2018. 51(5): p. 1841-1849.
    341. S. Akhtar, D. Shukla, and V. Kumar, Studies on Effect of nano-talc filler on nucleation, crystal morphology and crystallization behaviour of semi-crystalline plastics. Solid State Phenomena, 2008. 136: p. 161-174.
    342. C. K. Kailasanathan, S. T. Saravanan, E. Natarajan, B. Stalin, Polyoxymethylene/talc composite: Investigation of warpage, mechanical and thermal properties for thin walled-injection molding applications. Journal of Applied Polymer Science, 2021. 139 (10): p.51762.
    343. W. Prasong, A. Ishigami, S. Thumsorn, T. Kurose, H. Ito, Improvement of interlayer adhesion and heat resistance of biodegradable ternary blend composite 3D printing. Polymers. 2021. 13 (5):740.
    344. X. Liao, H. Xu, S. Li, C. Zhou, G. Li, C. B. Park, The effects of viscoelastic properties on the cellular morphology of silicone rubber foams generated by supercritical carbon dioxide. RSC Advances, 2015. 5 (129): p. 106981-106988.
    345. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, P. Sonntag, Nanofoaming of PMMA using a batch CO2 process: Influence of the PMMA viscoelastic behaviour. Polymer, 2015. 77: p. 1-9.
    346. A. K. Barick, and D. K. Tripathy, Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 2011. 52 (3): p. 312-321.
    347. L. M. Yu, and H. X. Huang, Temperature and shear dependence of rheological behavior for thermoplastic polyurethane nanocomposites with carbon nanofillers. Polymer, 2022. 247: p. 124791.
    348. H. Kim, and C. W. Macosko, Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules, 2008. 41 (9): p. 3317-3327.
    349. S. Hassanajili, and M. T. Sajedi, Fumed silica/polyurethane nanocomposites: effect of silica concentration and its surface modification on rheology and mechanical properties. Iranian Polymer Journal, 2016. 25 (8): p. 697-710.
    350. N. R. Demarquette, and D. J. Carastan, “Rheological behavior of nanocomposites,” in Nanocomposite Materials: Synthesis, Properties and Applications (CRC, Boca Raton, FL, 2016), p. 233–264.

    無法下載圖示 全文公開日期 2028/05/17 (校內網路)
    全文公開日期 2028/05/17 (校外網路)
    全文公開日期 2028/05/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE