簡易檢索 / 詳目顯示

研究生: 賴家儀
Chia-Yi Lai
論文名稱: 採光與能耗雙重目標最佳化之建築窗口尺寸設計
Bi-objective optimization of building windows design considering daylight autonomy and energy consuming
指導教授: 楊亦東
I-Tung Yang
口試委員: 施宣光
Shen-Guan Shih
呂守陞
Sou-Sen Leu
楊亦東
I-Tung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 採光能源永續建築多目標最佳化NSGA-II
外文關鍵詞: daylight autonomy, energy consumption, sustainable design, multi-objective optimization, NSGA-II
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自全球開始積極推動地球的永續發展,永續建築成為當今建築設計的主流。以保護地球為出發點的建築設計,並同時打造人類健康的生活環境空間。建築物能夠透過達到綠建築指標來實現永續的建築設計,其中室內環境指標與能源耗用量是綠建築指標當中兩大的評估標準。這兩項目標會存在著互相衝突的關係,例如當建築的窗口設計越大能夠提高室內採光量,然而卻會因為過多的陽光使得熱舒適度降低,而需要使用冷卻設備來降低溫度,進而使得能耗增加。因此建築設計需要透過權衡目標值才能設計出顧慮到所有性能指標的建築設計。
    本研究以提升建築室內的採光量與降低能源使用量作為改變建築窗口設計的兩大目標,使用Rhino/Grasshopper對建築模型建立參數化的窗口設計;使用Grasshopper外掛程式Ladybug 與Honeybee做為採光與能耗模擬分析的工具。本研究基於NSGA-II(Nondominated Sorting Genetic Algorithm II)開發採光與能耗雙重目標最佳化模式(DEBOO),透過參數化建模即時變換建築設計以及採光、能源模擬引擎模擬分析出空間自主採光量(sDA)與能源耗用量(EUI);針對建築的性能表現,對建築窗口設計進行最佳化演算產生柏拉圖最適解。DEBOO與MOPOS以及多目標演算軟體Octopus進行驗證比較。比較結果證明DEBOO能在所有可行的設計方案中尋找採光與能耗表現最佳的建築窗口設計,同時能獲取到最多的設計方案,提供設計者依照建築性能選擇符合永續指標的建築設計。


    As people around the world have growing concerns about sustainability development, currently sustainable building design attracts a great amount of attention. Sustainable building design dedicates to protect the environment and enhance human well-being. The indoor environment and energy-consuming are two major criteria among all categories of evaluation from the green building rating system and they usually are against each other. For instance, when bigger windows can increase daylight autonomy, too much daylight will heat up the indoor temperature. In such case, residents will need to use the cooling equipment to maintain a comfortable indoor environment causing increase in the energy demand. Therefore, when designers performs the design tasks, they have to understand the tradeoff relationship between daylight autonomy and energy consumption to seek a balanced performance.
    This study proposes an optimization model to enhance daylight autonomy and reduce energy consumption. The model is called DEBOO, which is based on NSGA-II(Nondominated Sorting Genetic Algorithm II) to find the best windows design for the building. DEBOO includes parametric design, building performance simulation, and bi-objective optimization. Using Rhino/Grasshopper to build the parametric model to change design quickly, and use daylight and energy simulation engine to simulate the spatial daylight autonomy and energy use intensity. It then performs optimization based on the simulation results. DEBOO helps designers explore numerous window designs and generate the Pareto Front that consists of a set of non-dominated designs in terms of two objectives: to maximize daylight autonomy and to minimize energy consumption. . DEBOO is compared with another popular multi-objective metaheuristic: MOPSO, and the commercial software package Octopus. The result verifies that DEBOO can find windows optimal designs with the most efficient performance. DEBOO also has more non-dominated design options than the other two tools. Thus, DEBOO can provides designers with more chooses to determine the most balanced design.

    摘要 i Abstract ii 致謝 iii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 4 2.1 建築設計 4 2.1.1 近代建築設計 4 2.1.2 當代建築設計 6 2.1.3 永續建築設計 6 2.1.4 永續建築評估系統標準 9 2.2 日照與能耗 11 2.2.1 建築室內採光 11 2.2.2 採光設計指標 13 2.2.3 採光模擬分析 14 2.2.4 建築能源指標 15 2.2.5 能源模擬分析 16 2.3 建築性能最佳化 17 2.3.1 參數化設計 17 2.3.2 建築最佳化設計 18 2.4 基因演算法 20 2.4.1 基因演算法流程 20 2.4.2 基因演算法於建築設計之應用 22 2.5 粒子群演算法 22 2.5.1 粒子群演算法機制 23 2.5.2 粒子群演算法於建築設計之應用 24 2.6 小結 25 第三章 建築性能最佳化開窗設計方法 26 3.1 整體研究架構 26 3.2 參數化模型 26 3.3 採光與能耗模型 29 3.3.1 Ladybug與Honeybee 29 3.3.2 採光與能耗模型建置與模擬分析 30 3.4 非支配排序基因演算法 32 3.4.1 NSGA-II演算機制 33 3.4.2 NSGA-II演算步驟 37 3.5 多目標粒子群最佳化演算法 42 3.5.1 MOPSO演算步驟 42 3.6 Octopus 46 第四章 建築採光與能源最佳化之窗口設計 48 4.1 研究模型設計 48 4.1.1 建築參數化模型 48 4.1.2 建築性能模型 50 4.2 最佳化演算設計 51 4.2.1 目標函數 52 4.2.2 限制條件 52 4.2.3 演算法參數設定 53 4.3 最佳化結果分析 54 4.3.1 最佳化結果世代分析 55 4.3.2 建築窗口最佳化結果分析 58 4.3.3 小結 62 4.4 最佳化設計驗證 63 4.4.1 MOPSO之最佳化設計結果 63 4.4.2 Octopus之最佳化設計 64 4.4.3 驗證最佳化設計結果比較 65 第五章 結論與建議 68 5.1 結論 68 5.2 建議 69 參考文獻 71 附錄A Grasshopper 可視化編程 74 附錄B 最佳化演算法程式碼 80

    Asfour, O. S. (2020). A comparison between the daylighting and energy performance of
    [2] courtyard and atrium buildings considering the hot climate of Saudi Arabia

    [3] Awadh, O. (2017). Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis.
    [4] Building Reseacrh Establishment. (2022). Best of BREEAM 2022:Exceptional sustainable places and project teams. In.
    [5] Carlucci, S., Causone, F., Rosa, F. D., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design.
    [6] Chantrelle, F. P., Lahmidi, H., Keilholz, W., Mankibi, M. E., & Michel, P. (2010). Development of a multicriteria tool for optimizing the renovation of buildings.
    [7] Chaturvedi, S., Bhatt, N., Gujar, R., & Patel, D. (2022). Application of PSO and GA stochastic algorithms to select optimum building envelope and air conditioner size - A case of a residential building prototype.
    [8] Chen, m. (2019). Rhino Grasshopper Beginner’s Tutorial.
    [9] Choi, J.-H., Beltran, L. O., & Kim, H.-S. (2011). Impacts of indoor daylight environments on patient average length of stay (ALOS) in a healthcare facility.
    [10] Coley, D. A., & Schukat, S. (2002). Low-energy design: combining computer-based optimisation and human judgement.
    [11] Czerwinska, D. (2016). Green building: Improving the lives of billions by helping to achieve the UN Sustainable Development Goals. https://www.worldgbc.org/news-media/green-building-improving-lives-billions-helping-achieve-un-sustainable-development-goals
    [12] Deb, K. (2002). A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II.
    [13] Delgarm, N., Sajadi, B., Kowsary, F., & Delgarm, S. (2016). Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization(PSO).
    [14] Earth Pledge. (2001). Sustainable Archigecture White Papers(Proposition-2) (陳重仁, Trans.). 積木出版社.
    [15] ElBatran, R. M., & Ismaeel, W. S. E. (2021). Applying a parametric design approach for optimizing daylighting and visual comfort in office buildings.
    [16] EnergyPlus. (2014). Ideal Loads Air System. https://bigladdersoftware.com/epx/docs/8-0/engineering-reference/page-092.html#ideal-loads-air-system
    [17] Fanga, Y., & Chob, S. (2019). Design optimization of building geometry and fenestration for daylighting and energy performance.
    [18] Grasshopper Doc. (2022). Grasshopper Addons and Plugins. Grasshopper Doc,.
    [19] Guo, K., Li, Q., Zhang, L., & Wu, X. (2021). BIM-based green building evaluation and optimization: A case study.
    [20] He, W., Li, W., Xu, S., Wang, W., & An, X. (2021). Time, Cost, and Energy Consumption Analysis on Construction Optimization in High-Rise Buildings.
    [21] Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Int. Bradford Books.
    [22] Hossain, M. U., & Ng, S. T. (2018). Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle.
    [23] Institute for Buildiing Environment and Energy Conservation. (2016). CASBEE Brochure. In: Institute for Buildiing Environment and Energy Conservation,.
    [24] International Energy Agency. (2021). Net Zero by 2050 A Roadmap for the Global Energy Sector. IEA Publications. www.iea.org
    [25] International WELL Building Institute. (2019). DAYLIGHT MODELING. https://standard.wellcertified.com/light/daylight-modeling
    [26] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
    [27] Kilic, D. K., & Hasirci, D. (2011). Daylighting Concepts for University Libraries and Their Influences on Users' Satisfaction.
    [28] Ladybug tools. (2021). Ladybug Tools Plugin for Grasshopper Documentation(Honeybee Primer:Apertures by Ratio). Ladybug tools,. https://docs.ladybug.tools/honeybee-primer/
    [29] Luo, Z., Lu, Y., Cang, Y., & Yang, L. (2021). Study on dual-objective optimization method of life cycle energy consumption and economy of office building based on HypE genetic algorithm.
    [30] Mayhoub, M. S., & Rabboh, E. H. (2022). Daylighting in shopping malls: Customer’s perception, preference, and satisfaction.
    [31] Miller, N. (2009). Parametric Strategies in Civic Architecture Design.
    [32] Nabil, A., & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors.
    [33] Nguyen, A.-T., Reiter, S., & Rigo, P. (2013). A review on simulation-based optimization methods applied to building performance analysis.
    [34] Pan, L., & Chu, L. M. (2015). Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study.
    [35] Panagiotidou, M., Aye, L., & Rismanchi, B. (2021). Optimisation of multi-residential building retrofit, cost-optimal and net-zero emission targets.
    [36] Queiroz, N. a., Westphal, F. S., & Pereira, F. O. R. (2020). A performance-based design validation study on EnergyPlus for
    [37] daylighting analysis.
    [38] Rapone, G., & Saro, O. (2012). Optimisation of curtain wall fac¸ ades for office buildings by means of PSO algorithm.
    [39] Rhinoceros. (2022). 建築、工程和營造工業的 Rhino. Robert McNeel & Associates,.
    [40] Sahua, M., Bhattacharjee, B., & Kaushika, S. C. (2012). Thermal design of air-conditioned building for tropical climate using admittance method and genetic algorithm.
    [41] U.S. Green Building Council. (2021). LEED v4.1 BUILDING DESIGN AND CONSTRUCTION. U.S. Green Building Council,.
    [42] U.S. Green Building Council. (2022). LEED rating system. U.S. Green Building Council,. https://www.usgbc.org/leed
    [43] Vierra, S., Assoc. AIA, LEED AP BD+C, & Vierra Design & Education Services, L., . (2019). Green Building Standards And Certification Systems. https://www.wbdg.org/resources/green-building-standards-and-certification-systems
    [44] Wen, B., Musa, S. N., Onn, C. C., Ramesh, S., Liang, L., Wang, W., & Ma, K. (2020). The role and contribution of green buildings on sustainable development goals.
    [45] Wong, I. L. (2017). A review of daylighting design and implementation in buildings.
    [46] World Green Building Council. (2016). Green building & the Sustainable Development Goals. https://www.worldgbc.org/green-building-sustainable-development-goals
    [47] Yang, M.-D., Lin, M.-D., Lin, Y.-H., & Tsai, K.-T. (2016). Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm.
    [48] Yu, X., & Su, Y. (2015). Daylight availability assessment and its potential energy saving estimation – A literature review.
    [49] Zhang, Y., Wang, W., Wang, Z., Gao, M., Zhu, L., & Song, J. (2021). Green building design based on solar energy utilization: Take a kindergarten competition design as an example.
    [50] Zhu, L., Wang, B., & Sun, Y. (2020). Multi-objective optimization for energy consumption, daylighting and thermal comfort performance of rural tourism buildings in north China.
    [51] 何昕家. (2019). 永續發展目標(SDGs)教育手冊-臺灣指南. 潘文忠.
    [52] 周世璋. (2017). 公共建築能源總量指標評估研究.
    [53] 孫全文. (2017). 都市建築與文化. 五南圖書出版股份有限公司.
    [54] 張克群. (2021). 手繪世界建築漫遊史. 原點出版Uni-Books.
    [55] 張又升. (2019). 台灣建築氣候分區之研究.
    [56] 張基義. (2007). 看見北美當代建築.
    [57] 張彧, 任立, & 唐獻超. (2019). 美國"淨零耗能"建築的新發展及啟示—以美國教育類"淨零耗能"建築為例.
    [58] 張文奎, 蘇梓靖, & 杜威達. (2015). 應用EnergyPlus 申請我國綠建築標章之實務介紹.
    [59] 徐偉程. (2015). 淺談參數化設計在建築設計中的應用.
    [60] 智慧綠建築資訊網. (2021a). 綠建築標章. 智慧綠建築資訊網. https://smartgreen.abri.gov.tw/cp.aspx?n=14204
    [61] 智慧綠建築資訊網. (2021b). 綠建築簡要介紹. 智慧綠建築資訊網. https://smartgreen.abri.gov.tw/cp.aspx?n=14169
    [62] 歐特克軟件(中國)有限公司. (2011). Autodesk Ecotect Analysis 綠色建築分析應用(附表2). 電子工業出版社.
    [63] 潘毅群, 黃治鐘, & 吳剛. (2007). 建築能耗模擬的校驗方法及其應用.
    [64] 瞿佳. (2017). 未來人工照明:向陽光靠近--人工智能照明與視覺建康.
    [65] 童寯. (2020). 新建築與流派.
    [66] 經濟部能源局. (2013). 建築節能應用技術手冊. 財團法人台灣綠色生產力基金會.
    [67] 羅時麒. (2017). 循環永續綠建築創新環境科技發展策略研究.
    [68] 趙雲鵬, 李昌寧, & 郭鑒. (2010). 節能建築中的被動式設計策略.
    [69] 邊宇, 袁磊, & 冷天翔. (2017). 動態採光指標分析與側窗採光範圍.
    [70] 郭日生. (2011). 全球實施《21世紀議程》的主要進展與趨勢.
    [71] 陳麒任. (2020). 我國近零能源建築推動進程與策略之研究.
    [72] 陳麒任, & 許閔涵. (2016). 屋頂隔熱改善之節能及室內熱舒適度模擬探討.
    [73] 陽春宇, 梁樹英, & 張青文. (2012). 調解人體生理節律的光照治療.

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 2024/07/29 (校外網路)
    全文公開日期 2024/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE