簡易檢索 / 詳目顯示

研究生: 呂亭妏
Ting-Wen LU
論文名稱: 珠擊處理316L不鏽鋼之常壓電漿氮化製程探討
The Enhanced Rapid Atmospheric Pressure Plasma Nitriding by Shot Peening on 316L Stainless Steel
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 郭俞麟
王朝正
孫瑛穗
柯坤呈
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 156
中文關鍵詞: 316L不鏽鋼常壓電漿噴射束氮化製程珠擊處理
外文關鍵詞: 316L stainless steel, Atmospheric pressure plasma nitriding, Shot Peening
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要................................................................................................................................ I ABSTRACT .................................................................................................................. II 致謝.............................................................................................................................. III 目錄............................................................................................................................... V 圖目錄......................................................................................................................... IX 表目錄........................................................................................................................ XV 第一章 緒論................................................................................................................ 1 1.1 前言 ......................................................................................................................................... 1 1.2 研究背景與目的 ................................................................................................................. 3 第二章 文獻回顧........................................................................................................ 5 2.1 不鏽鋼材料(STAINLESS STEEL) ...................................................................................... 5 2.1.1不鏽鋼分類 ...................................................................................................................... 5 2.1.2合金元素對不鏽鋼之影響 ......................................................................................... 7 2.1.3不鏽鋼之敏化現象(Sensitization) .......................................................................... 12 2.2 表面硬化處理(SURFACE HARDENING) ........................................................................ 13 2.2.1表面變成法 .................................................................................................................... 13 2.2.2表面披覆法 .................................................................................................................... 14 2.2.3表面加工硬化法 .......................................................................................................... 15 2.3 氮化處理(NITRIDING TREATMENT) .............................................................................. 17 2.3.1氮化原理及技術[8, 34, 35] ............................................................................................. 17 2.3.2合金元素對氮化之影響 ............................................................................................ 23 2.3.3氮化層的組織與性質 ................................................................................................. 24 2.4 電漿原理(PLASMA) ........................................................................................................... 26 2.4.1電漿基本介紹 ............................................................................................................... 26 2.4.2電漿原理及機制 .......................................................................................................... 27 2.4.3崩潰電壓(Breakdown Voltage) ............................................................................... 32 2.4.4非熱平衡與熱平衡電漿 ............................................................................................ 33 2.4.5常壓電漿放電方式 ..................................................................................................... 35 2.4.6常壓電漿之應用 .......................................................................................................... 38 2.5 珠擊處理(SHOT PEENING) .............................................................................................. 39 2.6.1噴砂加工與其延伸製程介紹及原理 .................................................................... 39 2.6.2珠擊處理的原理與其效益 ....................................................................................... 41 2.6.3珠擊處理對氮化的影響 ............................................................................................ 44 VI 2.6.4珠擊處理的其他應用 ................................................................................................. 44 2.6 腐蝕(CORROSION) .............................................................................................................. 46 2.7.1腐蝕與電化學反應 ..................................................................................................... 46 2.7.2腐蝕電流與腐蝕電位 ................................................................................................. 49 2.7.3腐蝕型態......................................................................................................................... 54 第三章 實驗流程與設備.......................................................................................... 59 3.1 實驗設計 .............................................................................................................................. 59 3.2 實驗材料 .............................................................................................................................. 61 3.3 實驗步驟 .............................................................................................................................. 63 3.3.1 316L不鏽鋼氮化前處理流程 ................................................................................. 63 3.3.2常壓電漿噴射束氮化處理流程 .............................................................................. 65 3.4 實驗設備 .............................................................................................................................. 66 3.4.1常壓電漿噴射束(Atmospheric Plasma Jet, APPJ) ............................................ 66 3.4.2常壓電漿噴射束系統組成 ....................................................................................... 66 3.5 材料分析儀器 .................................................................................................................... 69 3.5.1光學放射光譜儀(Optical Emission Spectroscopy, OES) ................................ 69 3.5.2熱電偶溫度計(Thermocouple Thermometer) ..................................................... 71 3.5.3維克氏硬度機(Vickers Hardness Test, HV) ....................................................... 72 3.5.4 X光繞射儀(X-ray Diffraction, XRD) ................................................................... 73 3.5.5場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) .................................................................................................................................... 75 3.5.6光學顯微鏡(Optical Microscope, OM) ................................................................. 77 3.5.7雷射共軛焦顯微鏡(Laser Scanning Confocal Microscopy, LSCM) ........... 79 3.5.8接觸角量測儀(Contact Angle Meter) .................................................................... 81 3.5.9奈米壓痕機械性質分析儀(Nanoindenter) .......................................................... 83 3.5.10恆電位儀(Potentiostat) ............................................................................................ 85 第四章 結果與討論.................................................................................................. 87 4.1電漿檢測 ................................................................................................................................. 87 4.1.1電漿物種分析 ............................................................................................................... 87 4.2溫度量測 ................................................................................................................................. 89 4.2.1溫度分析......................................................................................................................... 89 4.3表面與剖面之微結構觀察................................................................................................ 92 4.3.1 316L經珠擊處理與常壓電漿束氮化製程之表面觀察 ................................. 92 4.3.2光學顯微鏡用於材料剖面之形貌分析 ............................................................... 94 4.3.3場發射掃描式電子顯微鏡用於材料表面與剖面之形貌分析..................... 96 4.3.4雷射共軛焦顯微鏡用於材料表面之形貌分析 ............................................... 102 4.4晶體結構與元素分析 ....................................................................................................... 103 VII 4.4.1 X光繞射儀用於材料晶體結構分析 .................................................................. 103 4.4.2能量散射光譜儀用於氮元素分析 ....................................................................... 109 4.5機械性質分析 ..................................................................................................................... 113 4.5.1表面硬度分析 ............................................................................................................. 113 4.5.2剖面硬度分析 ............................................................................................................. 118 4.5.3表面粗糙度分析 ........................................................................................................ 120 4.5.4摩擦係數分析 ............................................................................................................. 124 4.5.5殘留應力分析 ............................................................................................................. 126 4.6水接觸角量測 ..................................................................................................................... 127 4.6.1親疏水性分析 ............................................................................................................. 127 4.6.2表面能量分析 ............................................................................................................. 129 4.7電化學腐蝕分析 ................................................................................................................. 130 4.7.1腐蝕表面形貌觀察 ................................................................................................... 130 4.7.2動電位極化曲線分析 ............................................................................................... 133 4.8常壓電漿噴射束之氮化機制 ......................................................................................... 141 第五章 結論............................................................................................................ 143 第六章 研究建議與未來展望................................................................................ 144 參考文獻.................................................................................................................... 145

[1] D. C. L. Vasconcelos, E. H. M. Nunes, A. C. S. Sabioni, P. Vasconcelos, and W. L. Vasconcelos, "Optical characterization of 316L stainless steel coated with sol–gel titania," Journal of non-crystalline solids, vol. 358, no. 22, pp. 3042-3047, 2012.
[2] S. Wang, Y. Li, M. Yao, and R. Wang, "Compressive residual stress introduced by shot peening," Journal of Materials Processing Technology, vol. 73, no. 1, pp. 64-73, 1998/01/01/ 1998, doi: https://doi.org/10.1016/S0924-0136(97)00213-6.
[3] F. Czerwinski, Heat treatment: Conventional and novel Applications. BoD–Books on Demand, 2012.
[4] soonxindisplay. "The Beauty Of Stainless Steel – 7 Kinds Of Surface Treatment Process." https://soonxindisplays.com/stainless-steel-surface-treatment/.
[5] J. I. Technology. "shot peening glass beads Product Features." https://www.jundaglassbeads.com/News/85.html.
[6] A. Almubarak, W. Abuhaimed, and A. Almazrouee, "Corrosion behavior of the stressed sensitized austenitic stainless steels of high nitrogen content in seawater," International Journal of Electrochemistry, vol. 2013, 2013.
[7] 正言權業不銹鋼有限公司. "不鏽鋼的傳奇特性與材質介紹." https://www.jenyen.com/index.php?action=blog-list&cid=103.
[8] 李勝隆, 金屬熱處理:原理與應用. 台灣: 全華圖書, 2018.
[9] 廖耀宇, "認識不銹鋼," (in 繁體中文), 技師期刊, no. 64&65, pp. 121-125, 2014. [Online]. Available: https://www.AiritiLibrary.com/Publication/Index/18156460-201403-201405220027-201405220027-121-125.
[10] 詹. 陳瑞凱, "不鏽鋼種與材質磁性的關係," 材料科學工程學系, 國立清華大學, 台灣, 2014.
[11] V. Kain, "5 - Stress corrosion cracking (SCC) in stainless steels," in Stress Corrosion Cracking, V. S. Raja and T. Shoji Eds.: Woodhead Publishing, 2011, pp. 199-244.
[12] Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, A. International.
[13] M. F. McGuire, Stainless steels for design engineers. Asm International, 2008.
[14] N. Ohkubo, K. Miyakusu, Y. Uematsu, and H. Kimura, "Effect of Alloying Elements on the Mechanical Properties of the Stable Austenitic Stainless Steel," ISIJ International, vol. 34, no. 9, pp. 764-772, 1994.
[15] S. Yamamoto, T. Sakiyama, and C. Ouchi, "Effect of alloying elements on recrystallization kinetics after hot deformation in austenitic stainless steels," Transactions of the Iron and Steel Institute of Japan, vol. 27, no. 6, pp. 446-452, 1987.
[16] R. A. Covert and A. H. Tuthill, "Stainless Steels: An Introduction to Their Metallurgy and Corrosion Resistance," 2000.
[17] D. Klenam, "Effect of temperature and carbonaceous environment on the fatigue behaviour of AISI 316L austenitic stainless steel," 2013.
146
[18] Z. Wang, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, "Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation," Electrochimica Acta, vol. 329, p. 135159, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.electacta.2019.135159.
[19] Z. Wang, E.-M. Paschalidou, A. Seyeux, S. Zanna, V. Maurice, and P. Marcus, "Mechanisms of Cr and Mo Enrichments in the Passive Oxide Film on 316L Austenitic Stainless Steel," (in English), Frontiers in Materials, Original Research vol. 6, 2019-September-24 2019.
[20] D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, "Influence of Molybdenum on Tribo-Corrosion Behavior of 316L Stainless Steel in Artificial Saliva," Journal of Bio- and Tribo-Corrosion, vol. 1, no. 2, p. 14, 2015/04/08 2015, doi: 10.1007/s40735-015-0014-z.
[21] A. Paúl, R. Sánchez, O. M. Montes, and J. A. Odriozola, "The Role of Silicon in the Reactive-Elements Effect on the Oxidation of Conventional Austenitic Stainless Steel," Oxidation of Metals, vol. 67, no. 1-2, pp. 87-105, 2007, doi: 10.1007/s11085-006-9046-6.
[22] L. Zhang, W. Yan, Q. Shi, Y. Li, Y. Shan, and K. Yang, "Silicon enhances high temperature oxidation resistance of SIMP steel at 700 °C," Corrosion Science, vol. 167, p. 108519, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.corsci.2020.108519.
[23] S. Hwang, Y. Lim, S. W. Kim, D.-J. Kim, and H. Kim, "Role of grain boundary carbides in cracking behavior of Ni base alloys," Nuclear Engineering and Technology, vol. 45, 02/25 2013, doi: 10.5516/NET.07.2012.013.
[24] M. S. Safavi, F. C. Walsh, M. A. Surmeneva, R. A. Surmenev, and J. Khalil-Allafi, "Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges," Coatings, vol. 11, no. 1, p. 110, 2021.
[25] Z. Wusatowski, Fundamentals of rolling. Elsevier, 2013.
[26] M. Jayalakshmi, P. Huilgol, B. R. Bhat, and K. U. Bhat, "Microstructural characterization of low temperature plasma-nitrided 316L stainless steel surface with prior severe shot peening," Materials & Design, vol. 108, pp. 448-454, 2016/10/15/ 2016, doi: https://doi.org/10.1016/j.matdes.2016.07.005.
[27] R. S. Molla, A study on Manufacturing of Deformed Bar (G 60-400W) at Elite Iron and Steel Industries. 2018.
[28] 黃振賢, 金屬熱處理, 18 ed. 台灣: 新文京, 2002.
[29] J. F. Serge Bertrand. "Gas nitriding." https://www.ald-france.eu/processes/nitriding/gas-nitriding/.
[30] M. Kulka, M. Kulka, and Castro, Current trends in boriding. Springer, 2019.
[31] M. G. DJ. MANDRINO, A. KOCIJAN, M. LAMUT, M. TORKAR, M. JENKO, "OXIDE AND NITRIDE PROTECTIVE LAYERS FORMED ON STAINLESS STEEL BY THERMAL TREATMENT: SEM, AES, WDS AND CORROSION MEASUREMENTS," 2007.
147
[32] T. T. Kodas and M. J. Hampden-Smith, The chemistry of metal CVD. John Wiley & Sons, 2008.
[33] S. Jia, S. Qu, X. Hu, F. Lai, C. Duan, and X. Li, "Effect of Shot Peening on Microstructures and High-Temperature Tribological Properties of 4Cr9Si2 Valve Steel," steel research international, https://doi.org/10.1002/srin.202100250 vol. 92, no. 11, p. 2100250, 2021/11/01 2021, doi: https://doi.org/10.1002/srin.202100250.
[34] E. Aparecida dos Santos de Almeida, J. C. G. Milan, and C. Edil da Costa, "Acquired properties comparison of solid nitriding, gas nitriding and plasma nitriding in tool steels," Materials Research, vol. 18, pp. 27-35, 2015.
[35] J. T. Slycke, E. J. Mittemeijer, and M. A. J. Somers, "Thermodynamics and kinetics of gas and gas–solid reactions," in Thermochemical Surface Engineering of Steels, E. J. Mittemeijer and M. A. J. Somers Eds. Oxford: Woodhead Publishing, 2015, pp. 3-111.
[36] B. Wang, S. Sun, M. Guo, G. Jin, Z. Zhou, and W. Fu, "Study on pressurized gas nitriding characteristics for steel 38CrMoAlA," Surface and Coatings Technology, vol. 279, pp. 60-64, 2015/10/15/ 2015, doi: https://doi.org/10.1016/j.surfcoat.2015.08.035.
[37] R. Sykora and M. Zetek, "Increasing Cutting Tool Efficiency When Machining Regulatory Spindles Made from Ion Nitrided Nimonic 901 for Steam Turbine Valves," Procedia Engineering, vol. 100, 12/31 2015, doi: 10.1016/j.proeng.2015.01.512.
[38] O. Gokcekaya, S. Yilmaz, C. Ergun, B. Kaya Ozcelik, and O. Yucel, Plasma Nitrided Austenitic Stainless Steel For Biomedical Applications. 2010.
[39] Y. Engineering. "A Unique Heat Treatment Method – Austempering." https://yenaengineering.nl/a-unique-heat-treatment-method-austempering/.
[40] V. T. Bonow, D. S. Maciel, N. L. Fenner, A. Reguly, A. Zimmer, and C. G. Zimmer, "Nitriding in non-toxic salts bath: An approach to implement cleaner production in the metallurgic industry," Cleaner Engineering and Technology, vol. 4, p. 100169, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.clet.2021.100169.
[41] D. Pye, Practical Nitriding and Ferritic Nitrocarburizing. ASM International, 2003.
[42] R. Schneider, H. Schweiger, G. Reiter, and V. Strobl, "Effects of different alloying elements on the hardness profile of nitrided hot-work tool steels," BHM Berg- und Hüttenmännische Monatshefte, vol. 151, pp. 105-109, 03/01 2006, doi: 10.1007/BF03165181.
[43] F. Czerwinski, "Thermochemical Treatment of Metals," 2012.
[44] A. Bernal, "Investigation on nitriding with emphasis in plasma nitriding process, current technology and equipment," Review Article, 2006.
[45] 王玠龍, "常壓電漿噴射束於沃斯田體系不鏽鋼電漿輔助氮化之研究," 碩士, 機械工程系, 國立台灣科技大學, 中華民國, 2020.
148
[46] 國家實驗研究院. "奇妙的電漿與電漿的應用." https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&qcat=0I164512522332344267&sid=0J123382852944198982.
[47] 王憲柏, "以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究," 碩士, 機械工程系, 國立臺灣科技大學, 中華民國, 2018.
[48] 鍾宛庭, "電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理," 碩士, 機械工程系, 國立臺灣科技大學, 中華民國, 2019.
[49] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, no. 4, pp. 609-658, 2002.
[50] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. John Wiley & Sons, 2005.
[51] J. R. Roth, Industrial Plasma Engineering. Taylor & Francis Group, 2009.
[52] 李安平, 寇崇善, 吳敏文, 曾錦清, 蔡文發, and 鄭國川, "電漿源原理與應用之介紹."
[53] Y. Setsuhara, "Low-temperature atmospheric-pressure plasma sources for plasma medicine," Archives of Biochemistry and Biophysics, vol. 605, pp. 3-10, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.abb.2016.04.009.
[54] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
[55] C. Bingyan, "Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value," Plasma Sources Science and Technology, vol. 16, pp. 1126-1134, 12/01 2014, doi: 10.1088/1009-0630/16/12/08.
[56] O. I. o. S. a. Technology. "Electrocharging Face Masks with Corona Discharge Treatment." https://groups.oist.jp/nnp/electrocharge-mask.
[57] M. Precision. "Dielectric Barrier Discharge (DBD)." https://www.matsusada.com/application/ps/dielectric_barrier_discharge/.
[58] B. Chen et al., "Atmospheric pressure plasma jet in organic solution: Spectra, degradation effects of solution flow rate and initial pH value," Plasma Science and Technology, vol. 16, no. 12, p. 1126, 2014.
[59] A. Molek. "Shot/Grit blasting vs. Shot peening." https://ferroecoblast.blog/shotblasting-vs-shotpeening/.
[60] S. Machining. "What is the difference between sand blasting and shot blasting?" https://shankmachining.com/what-is-the-difference-between-sand-blasting-and-shot-blasting/.
[61] 力能防鏽科技有限公司. "專利處理技術." https://www.helma.com.tw/product/1/data/6.
149
[62] A. Misra and L. Thilly, "Structural metals at extremes," MRS Bulletin, vol. 35, pp. 965-976, 12/01 2010.
[63] Y. Liao, C. Ye, and G. J. Cheng. Warm laser shock peening and related laser processing technique, 2016/04/01/, doi: https://doi.org/10.1016/j.optlastec.2015.09.014.
[64] A. Fatemi and M. Zoroufi, "FATIGUE PERFORMANCE EVALUATION OF FORGED VERSUS COMPETING PROCESS TECHNOLOGIES: A COMPARATIVE STUDY," 05/24 2022.
[65] Í. d. V. Tomaz, M. C. Martins, H. R. M. Costa, I. N. Bastos, and M. C. Fonseca, "Influence of residual stress on the sliding wear of AISI 4340 steel," Matéria (Rio de Janeiro), vol. 25, 2020.
[66] C.-W. S. TECHNOLOGIES. "How shot peening is applied." http://www.cwst.se/services/controlled-shot-peening/.
[67] X. Y. Zhang, M. H. Shi, C. Li, N. F. Liu, and Y. M. Wei, "The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal," Materials Science and Engineering: A, vol. 448, no. 1, pp. 259-263, 2007/03/15/ 2007, doi: https://doi.org/10.1016/j.msea.2006.10.029.
[68] S. Bagheri and M. Guagliano, "Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys," Surface Engineering, vol. 25, no. 1, pp. 3-14, 2009.
[69] L. Shen, L. Wang, Y. Wang, and C. Wang, "Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening," Surface and Coatings Technology, vol. 204, no. 20, pp. 3222-3227, 2010/07/15/ 2010, doi: https://doi.org/10.1016/j.surfcoat.2010.03.018.
[70] B. Hashemi, M. Rezaee Yazdi, and V. Azar, "The wear and corrosion resistance of shot peened–nitrided 316L austenitic stainless steel," Materials & Design, vol. 32, no. 6, pp. 3287-3292, 2011/06/01/ 2011, doi: https://doi.org/10.1016/j.matdes.2011.02.037.
[71] K. S. Klimek, H. Ahn, I. Seebach, M. Wang, and K. T. Rie, "Duplex process applied for die-casting and forging tools," Surface and Coatings Technology, vol. 174-175, pp. 677-680, 2003/09/01/ 2003, doi: https://doi.org/10.1016/S0257-8972(03)00365-7.
[72] A. Nishimoto, H. Nii, R. Narita, and K. Akamatsu, "Simultaneous duplex process of TiN coating and nitriding by active screen plasma nitriding," Surface and coatings technology, vol. 228, pp. S558-S562, 2013.
[73] L. Technologies. "What Is Shot Peening?" https://www.lsptechnologies.com/resources/what-is-shot-peening/.
[74] Rösler. "WET BLASTING TECHNOLOGY, PART 2 – COMPARING ATTRIBUTES, ADVANTAGES TO DRY BLASTING." https://cn.rosler.com/cn-zh/%E5%88%9B%E6%96%B0/roesler-blog/blog-datenspeicher/wet-blasting-2/#.
[75] Apple. "比較 iPhone 機型." https://www.apple.com/tw/iphone/compare/.
150
[76] S. S. Rajahram, T. J. Harvey, and R. J. K. Wood, "Erosion–corrosion resistance of engineering materials in various test conditions," Wear, vol. 267, no. 1, pp. 244-254, 2009/06/15/ 2009, doi: https://doi.org/10.1016/j.wear.2009.01.052.
[77] R. G. Wellman, "9 - Methods for studying erosion–corrosion," in Tribocorrosion of Passive Metals and Coatings, D. Landolt and S. Mischler Eds.: Woodhead Publishing, 2011, pp. 239-264.
[78] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering. Wiley, 2014.
[79] 莊東漢, "電化學原理於腐蝕研究上之應用," (in 繁體中文), 防蝕工程, vol. 4, no. 3, pp. 14-28, 1990, doi: 10.6376/JCCE.199009.0014.
[80] 柯賢文、王朝正, 腐蝕及其防制, 第三版 ed. 台北市: 全華圖書股份有限公司, 2014.
[81] A. Gazwi and A. Moftah, "An Investigation of Battery-Supercapacitor Power Source in Automotive Application," 2021.
[82] A. Groysman, Corrosion for Everybody. Springer Netherlands, 2009.
[83] 熊楚強、王月電化學, 電化學. 文京圖書, 2004.
[84] P. A. Schweitzer, Metallic materials: physical, mechanical, and corrosion properties. CRC press, 2003.
[85] N. Perez, Electrochemistry and corrosion science. Springer, 2004.
[86] D. Lee, H. Lee, and H. Jeong, "Slurry components in metal chemical mechanical planarization (CMP) process: A review," International Journal of Precision Engineering and Manufacturing, vol. 17, no. 12, pp. 1751-1762, 2016.
[87] M. Niinomi, Metals for biomedical devices. Woodhead publishing, 2019.
[88] G. S. Was and T. R. Allen, "Chapter 6 - Corrosion Issues in Current and Next-Generation Nuclear Reactors," in Structural Alloys for Nuclear Energy Applications, G. R. Odette and S. J. Zinkle Eds. Boston: Elsevier, 2019, pp. 211-246.
[89] M. G. Fontana and N. D. Greene, Corrosion engineering. McGraw-hill, 2018.
[90] R. Landolfo, C. Lucrezia, and F. Portioli, "Modeling of Metal Structure Corrosion Damage: A State of the Art Report," Sustainability, vol. 2, 07/01 2010, doi: 10.3390/su2072163.
[91] M. Wiener, B. valdez salas, J. Ocampo Díaz, and A. Eliezer, "Corrosion Control in the Desalination Industry," vol. 95, 2011.
[92] 育強科技股份有限公司. "GTF-H2固定式氫氣偵測器." https://gastech.com.tw/mobile/catalog_gtf-h2.html.
[93] 宏明科技有限公司. "OES 電漿(氣體)光譜檢測." https://www.hmtech.com.tw/page.php?menu_id=3&pd_id=238.
[94] 奇邑光電. "標準型光譜儀." https://gieoptics.com/photoelectric_01.php.
[95] M. Thamrin, A. Subandi, I. Idris, and A. Ahmad, "Experimental Characterization of a Thermopile with Aluminum-n-type Polysilicon Junctions as a Base for Multi-
151
directional Flow Sensor Implemented in a Silicon Chip," ITB Journal of Engineering Science, vol. 39, pp. 98-108, 11/01 2007, doi: 10.5614/itbj.eng.sci.2007.39.2.2.
[96] 泰仕電子工業股份有限公司. "K/J記憶式溫度錶." http://www.tes.com.tw/product_detail.asp?seq=119.
[97] S. A. Shahdad, J. F. McCabe, S. Bull, S. Rusby, and R. W. Wassell, "Hardness measured with traditional Vickers and Martens hardness methods," Dental Materials, vol. 23, no. 9, pp. 1079-1085, 2007/09/01/ 2007, doi: https://doi.org/10.1016/j.dental.2006.10.001.
[98] A. R. Franco Jr, G. Pintaúde, A. Sinatora, C. E. Pinedo, and A. P. Tschiptschin, "The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness," Materials Research, vol. 7, no. 3, pp. 483-491, 2004.
[99] Matsuzawa. "Micro vickers hardness tester MMT-X series." http://www.matsuzawa-ht.com/us/item/m_vick.htm.
[100] Y. Waseda, E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. Springer Science & Business Media, 2011.
[101] B. Cullity and S. Stock, "Elements of X-Ray Diffraction," ed: Pearson Education, 2014.
[102] M. Metwaly, "Nano-Era A New Prospect for Achieving Architectural Sustainability," 2013.
[103] O. Anderoglu, "Residual stress measurement using X-ray diffraction," Texas A&M University, 2005.
[104] BRUKER. "X-RAY DIFFRACTION (XRD) D2 PHASER." https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/d2-phaser.html.
[105] W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, "Fundamentals of Scanning Electron Microscopy (SEM)," in Scanning Microscopy for Nanotechnology: Techniques and Applications, W. Zhou and Z. L. Wang Eds. New York, NY: Springer New York, 2007, pp. 1-40.
[106] 羅聖全, "本月專題_科學基礎研究之重要利器─掃描式電子顯微鏡(SEM)," 科學研習, vol. 52, no. 探索奈米視界, 5-2, 2013.
[107] A. Mohammed and A. Abdullah, "Scanning electron microscopy (SEM): A review," in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018, pp. 7-9.
[108] A. Ul-Hamid, A beginners' guide to scanning electron microscopy. Springer, 2018.
[109] K. Akhtar, S. Khan, S. Khan, and A. M. Asiri, "Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization," 2019.
[110] JEOL. "JSM-7900F Schottky Field Emission Scanning Electron Microscope." https://www.jeol.co.jp/en/products/detail/JSM-7900F.html.
152
[111] S. Kawata, O. Nakamura, and S. Minami, "Optical microscope tomography. I. Support constraint," JOSA A, vol. 4, no. 1, pp. 292-297, 1987.
[112] V. Houérou, "Rayabilité des verres Silico-Sodo-Calciques," 07/18 2005.
[113] Biocompare, "ZEISS Axio Lab.A1 Upright Microscope for Laboratory Diagnostics from Carl Zeiss Microscopy," 2022. [Online]. Available: https://www.biocompare.com/10203-Biological-Microscopes-Compound-Microscopes/1661475-Axio-LabA1/.
[114] 泛. espa.taipei. "何謂雷射掃描共軛焦顯微鏡?." 泛科學. https://pansci.asia/archives/13379.
[115] S. W. Paddock, "Principles and practices of laser scanning confocal microscopy," Molecular biotechnology, vol. 16, no. 2, pp. 127-149, 2000.
[116] M. Ghafoor, "Synthesis of high refractive index materials for manufacturing apochromatic lens by 3D printing," 2017.
[117] KEYENCE. "形狀分析 雷射共軛焦 兼 白光干涉顯微鏡VK-X3000 系列." https://www.keyence.com.tw/products/microscope/laser-microscope/vk-x3000/index_pr.jsp.
[118] E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, "Roughness parameters," Journal of Materials Processing Technology, vol. 123, no. 1, pp. 133-145, 2002/04/10/ 2002, doi: https://doi.org/10.1016/S0924-0136(02)00060-2.
[119] L. Lesovoy, F. Matiko, and B. Chaban, "Equation of Arithmetic Mean Deviation of Roughness Profile," Energy Engineering, no. 2, pp. 81-88, 2019.
[120] T. Dey and D. Naughton, "Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective," Journal of Sol-Gel Science and Technology, vol. 77, no. 1, pp. 1-27, 2016/01/01 2016, doi: 10.1007/s10971-015-3879-x.
[121] R. J. Good, "Contact angle, wetting, and adhesion: a critical review," Journal of adhesion science and technology, vol. 6, no. 12, pp. 1269-1302, 1992.
[122] E. Decker, B. Frank, Y. Suo, and S. Garoff, "Physics of contact angle measurement," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 156, no. 1-3, pp. 177-189, 1999.
[123] 精志科技. "表面張力與接觸角." https://www.amtech.com.tw/custom_61209.html.
[124] F. P. S. Guastaldi et al., "Plasma Treatment Maintains Surface Energy of the Implant Surface and Enhances Osseointegration," International Journal of Biomaterials, vol. 2013, p. 354125, 2013/01/10 2013, doi: 10.1155/2013/354125.
[125] C. Lerman. "Hydrophobic vs Hydrophilic: Polyurethanes." Alchemy-Spetec. https://info.alchemy-spetec.com/blog/hydrophobic-vs-hydrophilic-polyurethanes.
[126] D. Y. Kwok and A. W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in colloid and interface science, vol. 81, no. 3, pp. 167-249, 1999.
153
[127] 欣創達科技有限公司. "光學視頻接觸角量測儀 - Model 100SB." http://www.sindatek.com/100sb.htm.
[128] K. Mussert, W.-P. Vellinga, A. Bakker, and S. Zwaag, "A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 - Al 2 O 3 MMC," Journal of Materials Science - J MATER SCI, vol. 37, pp. 789-794, 02/15 2002, doi: 10.1023/A:1013896032331.
[129] X. Li and B. Bhushan, "A review of nanoindentation continuous stiffness measurement technique and its applications," Materials Characterization, vol. 48, no. 1, pp. 11-36, 2002/02/01/ 2002, doi: https://doi.org/10.1016/S1044-5803(02)00192-4.
[130] BRUKER. "NANOMECHANICAL TEST SYSTEM Hysitron TI 980 Nanoindenter." https://www.bruker.com/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html.
[131] D. Li and A. Herrmann, "INDUSTRIAL COATING SCRATCH AND WEAR EVALUATION."
[132] Bio-Logic. "VSP Potentiostat." https://www.biologic.net/products/vsp/.
[133] M. Sode, W. Jacob, T. Schwarz-Selinger, and H. Kersten, "Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas," Journal of Applied Physics, vol. 117, no. 8, p. 083303, 2015.
[134] F. Borgioli, E. Galvanetto, and T. Bacci, "Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels," Vacuum, vol. 127, pp. 51-60, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.vacuum.2016.02.009.
[135] N. Mingolo, A. P. Tschiptschin, and C. E. Pinedo, "On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel," Surface and Coatings Technology, vol. 201, no. 7, pp. 4215-4218, 2006/12/20/ 2006, doi: https://doi.org/10.1016/j.surfcoat.2006.08.060.
[136] O. Stenzel, The physics of thin film optical spectra. Springer, 2015.
[137] A. F. Yetim, F. Yildiz, A. Alsaran, and A. çelik, "Surface modification of 316L stainless steel with plasma nitriding," Kovove Materialy, vol. 46, pp. 105-115, 01/01 2008.
[138] Y. Li et al., "Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior," J Mater Eng Perform, vol. 27, no. 3, pp. 948-960, 2018/03/01 2018, doi: 10.1007/s11665-018-3199-8.
[139] F. Borgioli, "From Austenitic Stainless Steel to Expanded Austenite-S Phase: Formation, Characteristics and Properties of an Elusive Metastable Phase," Metals, vol. 10, no. 2, p. 187, 2020, doi: 10.3390/met10020187.
[140] F. Borgioli, A. Fossati, G. Matassini, E. Galvanetto, and T. Bacci, "Low temperature glow-discharge nitriding of a low nickel austenitic stainless steel," Surface and Coatings Technology, vol. 204, no. 21, pp. 3410-3417, 2010/08/15/ 2010, doi: https://doi.org/10.1016/j.surfcoat.2010.04.004.
154
[141] D. Wu, H. Kahn, J. C. Dalton, G. M. Michal, F. Ernst, and A. H. Heuer, "Orientation dependence of nitrogen supersaturation in austenitic stainless steel during low-temperature gas-phase nitriding," Acta Materialia, vol. 79, pp. 339-350, 2014/10/15/ 2014, doi: https://doi.org/10.1016/j.actamat.2014.07.007.
[142] J. C. Stinville, P. Villechaise, C. Templier, J. P. Riviere, and M. Drouet, "Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution," Surface and Coatings Technology, vol. 204, no. 12, pp. 1947-1951, 2010/03/15/ 2010, doi: https://doi.org/10.1016/j.surfcoat.2009.09.052.
[143] H. Kovacı, Y. B. Bozkurt, A. F. Yetim, M. Aslan, and A. Çelik, "The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel," Surface and Coatings Technology, vol. 360, pp. 78-86, 2019/02/25/ 2019, doi: https://doi.org/10.1016/j.surfcoat.2019.01.003.
[144] F. Mahboubi and K. Abdolvahabi, "The effect of temperature on plasma nitriding behaviour of DIN 1.6959 low alloy steel," Vacuum, vol. 81, no. 3, pp. 239-243, 2006/10/24/ 2006, doi: https://doi.org/10.1016/j.vacuum.2006.03.010.
[145] K. T. Cho, K. Song, S. H. Oh, Y.-K. Lee, and W. B. Lee, "Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding," Surface and Coatings Technology, vol. 251, pp. 115-121, 2014.
[146] K. Lin, X. Li, Y. Sun, X. Luo, and H. Dong, "Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 39, no. 36, pp. 21470-21479, 2014/12/12/ 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.04.102.
[147] A. Yetim, F. Yildiz, A. Alsaran, and A. Celik, "Surface modification of 316L stainless steel with plasma nitriding," Kovove Materialy, vol. 46, no. 2, p. 105, 2008.
[148] H. Liu, Y. Wei, C. K. I. Tan, D. T. Ardi, D. C. C. Tan, and C. J. J. Lee, "XRD and EBSD studies of severe shot peening induced martensite transformation and grain refinements in austenitic stainless steel," Materials Characterization, vol. 168, p. 110574, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.matchar.2020.110574.
[149] J. Odahara et al., "Self-combustion synthesis of novel metastable ternary molybdenum nitrides," ACS Materials Letters, vol. 1, no. 1, pp. 64-70, 2019.
[150] D. S. Bem, C. M. Lampe-Önnerud, H. P. Olsen, and H.-C. zur Loye, "Synthesis and structure of two new ternary nitrides: FeWN2 and MnMoN2," Inorganic Chemistry, vol. 35, no. 3, pp. 581-585, 1996.
[151] A. M. Bernal, "INVESTIGATION ON NITRIDING WITH ENPHASIS IN PLASMA NITRIDING PROCESS, CURRENT TECHNOLOGY AND EQUIPMENT," 2006.
[152] T. Christiansen and M. Somers, "Low-temperature gaseous surface hardening of stainless steel: The current status," International Journal of Materials Research - INT J MATER RES, vol. 100, pp. 1361-1377, 10/01 2009.
155
[153] G. Subhash and W. Zhang, "Investigation of the overall friction coefficient in single-pass scratch test," Wear, vol. 252, no. 1, pp. 123-134, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0043-1648(01)00852-3.
[154] R. Rahme, F. Avril, P. Cassagnau, D. Sage, D. Verchère, and M. Doux, "New polymer/steel solution for automotive applications," International Journal of Adhesion and Adhesives, vol. 31, no. 7, pp. 725-734, 2011/10/01/ 2011, doi: https://doi.org/10.1016/j.ijadhadh.2011.06.015.
[155] D. Beegan, S. Chowdhury, and M. Laugier, "Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates," Surface and Coatings Technology, vol. 201, no. 12, pp. 5804-5808, 2007.
[156] H. Tsybenko, F. Farzam, G. Dehm, and S. Brinckmann, "Scratch hardness at a small scale: Experimental methods and correlation to nanoindentation hardness," Tribology International, vol. 163, p. 107168, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.triboint.2021.107168.
[157] F. Yildiz and A. Alsaran, "Multi-pass scratch test behavior of modified layer formed during plasma nitriding," Tribology International, vol. 43, no. 8, pp. 1472-1478, 2010/08/01/ 2010, doi: https://doi.org/10.1016/j.triboint.2010.02.005.
[158] P. S. Prevey, "X-ray diffraction residual stress techniques," ASM International, ASM Handbook., vol. 10, pp. 380-392, 1986.
[159] J. Osés, G. G. Fuentes, J. F. Palacio, J. Esparza, J. A. García, and R. Rodríguez, "Antibacterial functionalization of PVD coatings on ceramics," Coatings, vol. 8, no. 5, p. 197, 2018.
[160] F. Meng, J. Xu, H. Dai, Y. Yu, and D. Lin, "Even Incorporation of Nitrogen into Fe0 Nanoparticles as Crystalline Fe4N for Efficient and Selective Trichloroethylene Degradation," Environmental Science & Technology, vol. 56, no. 7, pp. 4489-4497, 2022/04/05 2022, doi: 10.1021/acs.est.1c08671.
[161] A. Nakajima, K. Hashimoto, and T. Watanabe, "Recent Studies on Super-Hydrophobic Films," in Molecular Materials and Functional Polymers, W. J. Blau, P. Lianos, and U. Schubert Eds. Vienna: Springer Vienna, 2001, pp. 31-41.
[162] P. Peyre et al., "Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance," Materials Science and Engineering: A, vol. 280, no. 2, pp. 294-302, 2000.
[163] R. Beneke and R. F. Sandenbergh, "The influence of nitrogen and molybdenum on the sensitization properties of low-carbon austenitic stainless steels," Corrosion Science, vol. 29, no. 5, pp. 543-555, 1989/01/01/ 1989, doi: https://doi.org/10.1016/0010-938X(89)90006-1.
[164] M. Saboktakin, H. Javadinejad, E. Aghababaei, and M. Ebrahimian, "Effect of Chlorine Ion on the Corrosion of 316L Austenitic Stainless Steel,"
156
10.4028/www.scientific.net/AEF.23.1, vol. 23, pp. 1-12, 07/01 2017, doi: 10.4028/www.scientific.net/AEF.23.1.
[165] J. M. Bastidas, C. L. Torres, E. Cano, and J. L. Polo, "Influence of molybdenum on passivation of polarised stainless steels in a chloride environment," Corrosion Science, vol. 44, no. 3, pp. 625-633, 2002/03/01/ 2002, doi: https://doi.org/10.1016/S0010-938X(01)00072-5.
[166] A. Schneider, D. Kuron, S. Hofmann, and R. Kirchheim, "AES analysis of pits and passive films formed on Fe-Cr Fe-Mo and Fe-Cr-Mo alloys," Corrosion Science, vol. 31, pp. 191-196, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0010-938X(90)90107-G.
[167] W. Kajzer, A. Kajzer, W. Walke, and M. J, "Corrosion behaviour of AISI 316L steel in artificial body fluids," Journal of Achievements in Materials and Manufacturing Engineering, vol. 31, 12/01 2008.
[168] C. Man, C. Dong, T. Liu, D. Kong, D. Wang, and X. Li, "The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid," Applied Surface Science, vol. 467-468, pp. 193-205, 2019/02/15/ 2019, doi: https://doi.org/10.1016/j.apsusc.2018.10.150.
[169] Y. Itikawa, "Cross sections for electron collisions with nitrogen molecules," Journal of physical and chemical reference data, vol. 35, no. 1, pp. 31-53, 2006.
[170] J.-S. Yoon et al., "Cross sections for electron collisions with hydrogen molecules," Journal of Physical and Chemical Reference Data, vol. 37, no. 2, pp. 913-931, 2008.
[171] H. Ohmi, J. Sato, Y. Shirasu, T. Hirano, H. Kakiuchi, and K. Yasutake, "Significant improvement of copper dry etching property of a high-pressure hydrogen-based plasma by Nitrogen Gas Addition," ACS omega, vol. 4, no. 2, pp. 4360-4366, 2019.

無法下載圖示 全文公開日期 2027/08/17 (校內網路)
全文公開日期 2027/08/17 (校外網路)
全文公開日期 2027/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE