簡易檢索 / 詳目顯示

研究生: 李志仁
Chi-rei Lee
論文名稱: 應用脈寬調變法以改善 螢光燈之電流峰值因數
The Improvement of Fluorescent Lamp Current Crest Factor by Using PWM Method
指導教授: 蕭弘清
Horng-Ching Hsiao
口試委員: 李麗玲
none
陳建富
none
梁從主
none
胡能忠
none
吳瑞南
none
辜志承
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 120
中文關鍵詞: 螢光燈電子安定器功因修正填谷式濾波電路峰值因數脈寬調變直流鏈電壓責任周期換流器零電壓切換功率因數總諧波失真
外文關鍵詞: fluorescent lamp, electronic ballast, power factor correction, valley-filled filter, current crest factor, PWM, dc-linkvoltage, duty ratio, inverter, zero voltage switching, powerfactor, THD
相關次數: 點閱:359下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在照明的領域中,螢光燈的使用甚是廣泛。而基於節約用電與照明品質的雙重需求,在螢光燈具中搭配採用電子式安定器實有其必要性。而為了符合電器用品的高功因要求,電子安定器中之功因修正電路部份,多有採用主動式功因修正的方式;但為了成本與市場競爭性的因素,亦有許多小型螢光燈具採用被動式功因修正者,如填谷式濾波電路即是。其具有高功因與電路簡單成本低廉的優點,但卻會使得燈管電流具有偏高的峰值因數,而致傷害螢光燈管之電極與縮短燈管之使用壽命。
在本論文中提出以脈寬調變之方法,來降低填谷式電子安定器所導致之偏高的燈管電流峰值因數。其饋入填谷式濾波電路之直流鏈電壓波形,以控制晶體開關之切換責任周期,使其能有效的抑制燈管電流之峰值,進而改善燈管電流峰值因數。文中介紹脈寬調變之控制方塊圖並推導控制方程式,更進一步地將燈管電流峰值與有效值予以函數化,因而能尋求得到燈管電流峰值因數之最小改善值。本文所採之控制改善方式無須使用電流感測回授控制,因而使得控制電路簡單易實現且成本低廉。而在全區的脈寬調變範圍裡,換流器之晶體開關可完全做到零電壓切換。此外,由於採取固定頻率的控制方式,可使得EMI濾波電路易於設計且有較佳之濾波效果。在電路模擬中以四種小型螢光燈作為模擬標的,從其燈管電流峰值因數的改善結果來看,本文所提出之脈寬調變的改善方法,對於各種低啟動電壓之小型螢光燈都具有普遍的適用性。最後經由電路實作獲得良好的驗證,實測其燈管電流峰值因數可由1.9改善至1.58,電源功率因數約為0.96,電流總諧波失真(THDI)為29.3%。


Fluorescent lamps are used generally in lighting domain. Due to the demand of energy saving and lighting quality, it is necessary to adopt the electronic ballast in the lighting fixture. Besides, in order to gain high power factor, the active power factor correction circuit is usually used in the electronic ballast. However, due to the considerations of cost-effective and market-competitive, the valley-filled PFC circuit is extensively applied in the small or compact fluorescent lamps. It has merits of high power, simple structure and low cost. However, it also makes the lamp has an over high current crest factor, which is harmful to the electrodes of lamp and shorten the lifetime of lamps.
In this dissertation, a PWM method to improve the lamp current crest factor of the valley-filled electronic ballast is presented. The proposed method controls switching duty ratio by feeding forward the dc-link voltage waveform of the valley-filled filter. It decreases the duty ratio with rising of dc-link voltage. Therefore, the proposed method can restrain the lamp peak current and improve the lamp current crest factor. The control block diagram and basic theory are introduced to explain the improving principle. Furthermore, the functions of lamp effective current and peak current can be calculated to gain the minimum current crest factor. The control circuit is simple, economy and unnecessary to use the feedback control and current sensor. Moreover, the proposed method can achieve soft-switching (zero voltage switching) in whole modulation range. Additionally, fixed switching frequency operation provides good filer effect and simplified EMI filter design. Finally, the computer simulation and circuit implementation verify the proposed method. The experimental results demonstrate the lamp current crest factor was reduced from 1.9 to 1.58, the ac line power factor is 96% and the input current THD is 29.3%.

中文摘要 i 英文摘要 iii 誌謝 v 目錄 vi 圖表索引 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關文獻研究概況 3 1.3 研究程序與方法 5 1.4 改善控制架構 8 1.5 研究貢獻 9 1.6 論文章節概要 10 第二章 螢光燈電子安定器與主動功因修正電路 13 2.1 螢光燈之特性 13 2.2 電子安定器 17 2.3 功因修正電路 19 2.3.1 主動式功因修正電路 21 2.3.2 連續電流模式 22 2.3.3 不連續電流模式 23 2.3.4 單級式(single stage)架構 25 第三章 電路分析與改善策略研究 27 3.1 填谷式電子安定器電路 27 3.2 電磁干擾濾波器電路 28 3.3 填谷式功因修正電路 30 3.3.1 電路原理與特性 30 3.3.2 工作模式 31 3.4 諧振電路 34 3.4.1 動作原理 35 3.4.2 電路設計 38 3.5 電路分析 41 3.5.1 偏高的燈管電流峰值因數 41 3.5.2 變流器切換電壓與等效諧振電路 44 3.5.3 輸入阻抗、輸入電流與品質因數 45 3.5.4 轉移函數與頻率響應 46 3.6 改善策略與方法 48 3.6.1 頻率調變方式之探討 48 3.6.2 脈寬調變之改善策略 49 3.6.3 脈寬調變之電路架構與分析 51 3.7 燈管電流峰值因數之最佳改善值 53 3.7.1 燈管電流有效值函數 53 3.7.2 燈管電流峰值函數 54 3.7.3 燈管電流峰值因數函數 55 3.8 結語 56 第四章 電路設計與模擬 58 4.1 電子安定器電路與改善控制電路 58 4.2 安定器主電路之設計 60 4.3 電路模擬 62 4.4 模擬結果 64 4.4.1 燈管電流波形與峰值因數 64 4.4.2 直流鏈電壓、控制電壓與燈管電流波形 72 4.4.3 波谷時段與波峰時段之燈管電流波形 73 4.4.4 晶體開關之切換電壓與電流波形 77 4.4.5 電源端之電壓與電流波形 82 4.5 結語 83 第五章 實驗結果與討論 86 5.1 硬體架構 86 5.1.1 電子安定器主電路 86 5.1.2 控制電路 89 5.1.3 量測線路示意圖 93 5.2 實驗結果 94 5.2.1 直流鏈電壓、控制電壓與燈管電流波形 94 5.2.2 燈管電流波形與峰值因數 95 5.2.3 波谷時段與波峰時段之燈管電流波形 96 5.2.4 晶體開關之切換電壓與電流波形 98 5.2.5 電源端之電壓與電流波形 99 5.3 討論與結語 100 第六章 結論與未來研究方向 102 6.1 結論 102 6.2 未來研究方向 105 參考文獻 107 作者簡介 119

[1]「中小學教室照明規劃設計驗收講義」,中華民國電機技師公會全國聯合會,第82~99頁,民國八十五年。
[2] American Nation Standard for Fluorescent Lamp Rapid-Start-Types Dimensional and Electrical Characteristics, American National Standards Institute, Inc.
[3] IEC Lighting Handbook, Reference and Application, Illuminating Engineering Society of North America (1993).
[4] E. E. Hammer, “Fluorescent Lamp Starting Voltage Relationships at 60Hz and High Frequency,” Journal of the Illuminating Engineering Society, pp.36-46 (1987).
[5] E. E. Hammer, “High Frequency Characteristics of Fluorescent Lamps up to 500kHz,” Journal of Illuminating Engineering Society, pp.52-61 (1987).
[6] E. E. Hammer and T.K. McGowan, “Characteristics of Various F40 Fluorescent Systems at 60 Hz and High Frequency,” IEEE Transactions on Industry Applications, vol. IA-21, no.1, pp.11-16 (1985).
[7] R. R. Verderber, O. C. Morse, and W. R. Alling, “Harmonics from Compact Fluorescent Lamps,” PESC95 IEEE Trans. Ind. Applicat., vol. 29, pp.670-674 (1993).
[8] E. Deng and S. C’uk, “Negative Incremental Impedance and Stability of Fluorescent Lamps,” Proc. IEEE APEC’97, vol. 1, pp.1050-1056 (1997).
[9] W. R. Alling, “Important Design Parameters for Solid-State Ballasts,” IEEE Transactions on Industry Applications, vol. 25 no.2, pp.203-207 (1989).
[10]M. K. Kazimierczuk and W. Szaraniev, “Electronic Ballast for Fluorescent Lamps,” IEEE Transactions on power Electronics, vol. 8, no.4, pp.386-395 (1993).
[11]鄭振東,「交換式穩壓電源的高諧波干擾對策」,全華書局,民國九十年。
[12] M. A. D. Costa, R. N. do Prado, A. Campos, and A. R. Seidel, “An Analysis about Valley Fill Filters Applied to Electronic Ballasts,” IEEE Industrial Electronics Society, vol.1, pp.509-514 (2003).
[13] J. H. Campbell, H. E. Schultz, and D. D. Kershaw, “Characteristics and Applications of High-Frequency Fluorescent Lighting,” Illuminating Engineering, pp.95-103 (1953).
[14]E. E. Hammer, “Starting Voltage Characteristics of 40-W Biaxial Fluorescent Lamps,” IEEE Transactions on Industry Applications, vol. 26, Issue 3, pp.498-502 (1990).
[15]T. Liu, K. J. Tseng, and D. M. Vilathgamuwa, “A PSpice Model for the Electrical Characteristics of Fluorescent Lamps,” Power Electronics Specialists Conference, PESC 98 Record. 29th Annual IEEE vol.2, May, pp.1749-1754 (1998).
[16]U. Mader and P. Horn, “A Dynamic Model for the Electrical Characteristics of Fluorescent Lamps,” Industry Applications Society Annual Meeting, Conference Record of the 1992 IEEE, 4-9 Oct. vol.2, pp.1928-1934 (1992).
[17]G. W. Chang and Y. J. Liu, “A New Approach for Modeling Voltage–Current Characteristics of Fluorescent Lamps,” IEEE Transactions on Power Delivery, vol. 23, issue 3, July, pp.1682- 1684 (2008).
[18]Min Chen and Zhaoming Qian, “A Fluorescent Lamp Model Based on Its Physical Characteristics,” Power Electronics and Drive Systems, PEDS 2003. The Fifth International Conference on Nov. vol.2 pp.1132-1136 (2003).
[19]Xiaoming Wang, Ke Zhao, Ying Zhao, and Wenxiang Shi, “Characteristics of Fluorescent Lamp with Dimmable Electronic Ballast,” Power Electronics and Drive Systems, PEDS 2003. The Fifth International Conference on Nov. vol. 2, pp.1533-1536 (2003).
[20]W. Kaiser, R. P. Marques, and A. F. Correa, ”Impact of Current Crest Factor at High and Low Frequency Operation on Fluorescent Lamp Electrodes,” Industry Applications Conference, 2006. 41th IAS Annual Meeting. Conference Record of the 2006 IEEE vol. 1, Oct. pp.236-241 (2006).
[21]M. Narui and F. P. Dawsan, “A Spice Model for Simulating Arc Discharge Loads,” IEEE Applied Power Electronic Conference, pp.1476-1481 (1991).
[22]Min Chen, A. Mathew, and Jian Sun; “Nonlinear Current Control of Single-Phase PFC Converters,” IEEE Transactions on Power Electronics, vol. 22, issue 6, pp.2187-2194 ( 2007).
[23]Y. Jang, D. L. Dillman, and M. M. Jovanovic, “A New Soft-Switched PFC Boost Rectifier with Integrated Flyback Converter for Stand-by Power,” IEEE Transactions on Power Electronics, vol. 21, issue 1, pp.66-72 (2006).
[24]Y. Jang, M. M. Jovanovic, and D. L. Dillman, “Soft-Switched PFC Boost Rectifier With Integrated ZVS Two-Switch Forward Converter,” IEEE Transactions on Power Electronics, vol. 21, issue 6, pp.1600-1606 (2006).
[25]L. Huber, B. T. Irving, and M. M. Jovanovic, “Open-Loop Control Methods for Interleaved DCM/CCM Boundary Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 23, issue 4, July 2008, pp.1649-1657 (2008).
[26]Min Chen and Jian Sun, “Feedforward Current Control of Boost Single-Phase PFC Converters,” IEEE Transactions on Power Electronics, vol. 21, issue 2, March 2006, pp.338-345 (2006).
[27]M. C. Cosby and R. M. Nelms, “Designing a Parallel Loaded Resonant Inverter for an Electronic Ballast Using the Fundamental Approximation,” IEEE Applied Power Electronic Conference, pp.418-423 (1993).
[28]T. H. Yu and T. F. Wu, “Self Excited Half-Bridge Series Resonant Parallel Loaded Fluorescent Lamp Electronic Ballast,” IEEE Applied Power Electronic Conference, pp.657-664 (1995).
[29]T. H. Yu, L. M. Wu, and T. F. Wu, “Comparisons among Self-Excited Parallel Resonant, Series Resonant and Current-Fed Push-Pull Electronic Ballast,” IEEE Applied Power Electronic Conference, pp.421-426 (1994).
[30]Chin Sien Moo, Kuo Hsing Lee, Hung Liang Cheng, and Wei Ming Chen, “A Single-Stage High-Power-Factor Electronic Ballast With ZVS Buck-Boost Conversion,” IEEE Transactions on Industrial Electronics, vol. 56, issue 4, April 2009, pp.1136-1146 (2009).
[31]Ying-Chun Chuang, Chin-Sien Moo, Hsien-Wen Chen, and Tsai-Fu Lin, “A Novel Single-Stage High-Power-Factor Electronic Ballast With Boost Topology for Multiple Fluorescent Lamps,” IEEE Transactions on Industry Applications, vol. 45, issue 1, Jan.-feb. 2009, pp.323-331 (2009).
[32]J. C. W. Lam and P. K. Jain, “A Dimmable Electronic Ballast With Unity Power Factor Based on a Single-Stage Current-Fed Resonant Inverter,” Industry Applications, IEEE Transactions on Power Electronics, vol. 23, issue 6, Nov. 2008, pp.3103-3115 (2008).
[33]C. Blanco, M. Alonso, E. Lopez, A. Calleja, and M. Rico, “A Single Stage Fluorescent Lamp Ballast with High Power Factor,” Applied Power Electronics Conference and Exposition, 1996. APEC '96. Conference Proceedings 1996., Eleventh Annual vol.2, March 1996, pp.616- 621 (1996).
[34]E. Deng and S. ‘Cuk, “Single Stage, High Power Factor, Lamp Ballast,” Applied Power Electronics Conference and Exposition, 1994. APEC '94. Conference Proceedings 1994., Ninth Annual vol.1, Feb. 1994, pp.441-449 (1994).
[35]F. S. Dos Reis, J. C. M. Clima, Jr. Tonkoski, G. B. Maizonave, G. B. Ceccon, A.Bombardieri, and R. W. Dos Reis, “A Single Stage Electronic Ballast Family for High Pressure Sodium Lamps,” Industrial Electronics, 2006 IEEE International Symposium on vol. 2, July 2006, pp.715-720 (2006).
[36]A. Silva de Morais, V. J. Farias, L. C. de Freitas, E. A. A. Coelho, and J. Jr. Batista Vieira, “A High Power Factor Ballast Using a Single Switch with Both Power Stages Integrated,” IEEE Transactions on Power Electronics, vol. 21, issue 2, March 2006, pp.524-531 (2006).
[37]Jan-Bin Lio, Min-Chin Lee, D. Y. Chen, and Yan-Pei Wu, “Single Switch Unity-Power-Factor Dimmable Fluorescent Lamp Ballast Circuit,” Electronics Letters, vol. 32, issue 3, 1 Feb. 1996, pp.146-147 (1996).
[38] J. Lam and P. K. Jain, “Single Switch Electronic Ballast with Unity Power Factor for Compact Fluorescent Lightings Based on a Single-Stage Current Fed Resonant Inverter,” Industry Applications Conference, 2007. 42nd IAS Annual Meeting. Conference Record of the 2007 IEEE, Sept. 2007, pp.819-825 (2007).
[39]E. Deng and S. ‘Cuk, “Single Switch, Unity Power Factor, Lamp Ballasts,” Applied Power Electronics Conference and Exposition, 1995. APEC '95. Conference Proceedings 1995., Tenth Annual issue 0, vol.2, part 2, March 1995, pp.670-676 (1995).
[40]J. Lam, P. K. Jain, and V. Agarwal, “A Novel SEPIC Type Single-Stage Single Switch Electronic Ballast with Very High Power Factor and High Efficiency,” Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, June 2008, pp.2861-2866 (2008).
[41]A. S. Morais, C. A. Gallo, F. L. Tofoli, E. A. A. Coelho, L. C. Freitas, V. J. Farias, and J. B. Jr. Vieira, “A High Power Factor Ballast with a Single Switch and a Single Power Stage,” Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE
vol. 1, pp.149-152 (2004).
[42]J. A. Jr. Vilela, A. R. Vaz, V. J. Farias, L. C. de Freitas, E. A. A. Coelho, and J. B. Jr. Vieira, “A High Power Factor Electronic Ballast with a Single Switch and Single Power Stage,” Applied Power Electronics Conference and Exposition, 2003. APEC '03. Eighteenth Annual IEEE
vol. 2, Feb. 2003, pp.1198-1204 (2003).
[43]Yan Jiang, Jinghai Zhou, and Zhaoming Qian, “A Novel Single Stage Single Switch PFC Converter with Constant Power Control for Ballast of Medium HID Lamps,” Industry Applications Conference, 2000. Conference Record of the 2000 IEEE vol. 5, Oct. 2000, pp.3415-3418 (2000).
[44]M. H. Kheraluwala and S. A. El-Hamamsy, “Modified Valley-fill High Power Factor Electronic Ballast for Compact Fluorescent Lamps,” PESC95, vol. 1, pp.10-14 (1995).
[45]Y. S. Youn, G. Chae, and G. H. Cho, “A Unity Power Factor Electronic Ballast for Fluorescent Lamp Having Improved Valley-fill and Valley Boost Converter,” IEEE PESC record, pp.53-59 (1997).
[46]P. N. Wood, “Fluorescent Ballast Design Using Passive PFC and Crest Factor Control,” in Conf. Rec. IEEE-IAS Annul Meeting, pp.2076-2081 (1998).
[47]J. Song, J-H. Song, I. Choy, and J-Y Choi, “Improving Crest Factor of Electronic Ballast-Fed Fluorescent Lamp Current Using Pulse Frequency Modulation,” IEEE Transaction on Industrial Electronics, vol. 48, no. 5, pp.1015-1024 (2001).
[48]A. R. Seidel, F. E. Bisogno, D. Pappis, M. A. Dalla Costa, and R. N. do Prado, “Simple Valley-Fill Self-Oscillating Electronic Ballast with Low Crest Factor Using Pulse-Frequency Modulation,” Industry Applications Conference, vol.2, pp.779-784 (2003).
[49]M. Gulko and S. B. Yaakov, “Current-Sourcing Push-Pull Parallel Resonance Inverter (CS-PPRL): Theory and Application as a Discharge Lamp Driver,” IEEE Transactions on Industrial Electronics, vol. 41, no. 3, pp.285-291 (1994).
[50]M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, vol. 41, no. 4, pp.418-425 (1994).
[51]T. F. Wu, Y. C. Liu, and Y. J. Wu, “High-Efficiency Low-Stress Electronic Dimming Ballast for Multiple Fluorescent Lamps,” IEEE Transactions on Power Electronics, vol. 14, no. 1, pp.160-166 (1999).
[52]C. S. Moo, H. L. Cheng, H. N. Chen, and H. C. Yen “Designing Dimmable Electronic Ballast with Frequency Control,” IEEE Applied Power Electronic Conference, pp.727-733 (1999).
[53]M. Ponce, J. Arau, J. M. Alonso, and M. Rico-Secades, “Electronic Ballast Based on Class E Amplifier with a Capacitive Inverter and Dimming for Photovoltaic Applications,” IEEE Industrial Applications Society Annual Meeting, pp.1156-1162 (1998).
[54]C. S. Moo, C. R. Lee, and Y. C. Chung, “A Protection Circuit for Electronic Ballasts with Self-Excited Series-Load Resonant Inverter,” IEEE Conference on Industrial Electronics, Control and Instrumentation, pp.1116-1121 (1996).
[55]Y. R. Yang and C. L. Chen, “A Self-Excited Half-Bridge Series-Resonant Ballast with Automatic Input Current Shaping,” IEEE Power Electronics Specialists Conference, pp.881-886 (1996).
[56]T. H. Yu, H. M. Huang, and T. F. Wu, “Self Excited Half-Bridge Series Resonant Parallel Loaded Fluorescent Lamp Electronic Ballasts,” IEEE Applied Power Electronic Conference, pp.657-664 (1995).
[57]J. Adams, T. J. Ribarich, and J. Ribarich, “A New Control IC for Dimmable High-Frequency Electronic Ballasts,” IEEE Applied Power Electronics Conference, pp.713-719 (1999).
[58]Philips Semiconductors, “UBA2021 570V Drive IC for CFL and TL Lamps,” Application Note AN98099 (1998).
[59]M. Jordan and J. A. O`connor, “Resonant Fluorescent Lamp Converter Provide Efficient and Compact Solution,” IEEE Applied Power Electronics Conference, pp.424-431 (1993).
[60]J. S. Subjak and J. S. Mcquilkin, “Harmonics-Causes, Effects, Measurements, and Analysis: An Update,” IEEE Transactions on Industry Applications, vol. 26, no. 6, pp.1034-1042 (1990).
[61]R. P. Stratford, “Harmonic Pollution on Power Systems-A Change in Philosophy,” IEEE Transactions on Industry Applications, vol. 16, no. 5, Sep./Oct. (1980).
[62]R. P. Verderber, O. C. Morse, and W. R. Alling “Harmonics form Compact Fluorescent Lamps,” IEEE Industrial Applications Society Annual Meeting, pp.1853-1858 (1991).
[63]R. Arseneau and M. Ouellette, “The Effects of Supply Harmonics on the Performance of Compact Fluorescent Lamps,” IEEE Transactions on Power Delivery, vol. 4, no. 3, pp.1965-1969 (1989).
[64]M. E. Amoli, and T. Florence, “Power Factor and Harmonic Distortion Characteristics of Energy Efficient Lamps,” IEEE Transactions on Power Delivery, vol. 4, no.3, pp.1965-1969 (1989).
[65]R. Christiansen, “Effect of High Levels of Harmonics from Lighting Equipment and System,” IEEE Industrial Application Society Annual Meeting, pp.1859-1862 (1991).
[66]S. Datta, “Power Pollution Cased by Lighting Control System,” IEEE industrial Applications Society Annual Meeting, pp.1842-1852 (1991).
[67]M. Kazerani, P. D. Ziogas, and G. Joos, “A Novel Active Current Waveshaping Technique for Solid-State Input Power Factor Conditioners,” IEEE Transactions on Industrial Electronics, vol. 38, no.1, pp.72-78 (1991).
[68]V. J. Thottuvelil, D. Chin, and G.C. Verghese, “Hierarchical Approaches to Modeling High-Power-Factor AC-DC Converters,” IEEE Transactions on Power Electronics, vol. 6, no. 2, pp.179-187 (1991).
[69]Z. Lai and K. M. Smedley, “A Family of Continuous Conduction Mode Power-Factor-Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, vol. 13, no.3, pp.501-510 (1998).
[70]A. F. de Souza and I. Barbi, “A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses,” IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp.82-90 (1999).
[71]H. Endo, T. Yamashita, and T. Sugiura, “A High-Power-Factor Buck Converter,” Conference Record of IEEE Power Electronics Specialists Conference, pp.1071-1076 (1992).
[72]J. C. Salmon, “Techniques for Minimizing the Input Current Distortion of Current-Controlled Single-Phase Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 8, no.4, pp.509-520 (1993).
[73]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysis of a Hysteretic Boost Power Factor Correction Circuit,” IEEE Power Electronics Specialist Conference, pp.800-807 (1990).
[74]K. H. Liu and Y. L. Lin, “Current Waveform Distortion in Power Factor Correction Circuits Employing Discontinuous-Mode Boost Converters,” IEEE Power Electronics Specialists Conference, pp. 825-829 (1989).
[75]L. Huber and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-Input-Voltage Range,” IEEE Transactions On Power Electronics, vol. 13, no. 3, pp.528-537 (1998).
[76]A. R. Prasad, P. D. Ziogas, and S. Manias, “A New Active Power Factor Correction Method for Single-Phase Buck-Boost AC-DC Converter,” Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, pp.814-820 (1992).
[77]M. A. de Rooij, J. A. Ferreira, and J. D. van Wyk, “A Novel Unity Power Factor Low-EMI Uninterruptible Power Supply,” IEEE Transactions On industry Applications, vol. 34, no. 4, pp.870-877 (1998).
[78]R. Srinivasan and R. Oruganti, “A Unity Power Factor Converter Using Half-Bridge Boost Topology,” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp.487-500 (1998).
[79]L. Malesani, L. Rossetto, G. Spiazzi, and P. Tenti, “High Efficiency Electronic Lamp Ballast with Unity Power Factor’, IEEE Industry Applications Society Conf. Record, pp.681-688 (1992).
[80]M. Madigan, R. Erickson, and E. Ismail, “Integrated High Quality Rectifier-Regulators”, IEEE Power Electronic Specialist conference, pp.1043-1051 (1992).
[81]C. Licitra, L. Malesani, G. Spiazzi, P. Tenti, and A. Testa, “Single-Ended Soft-Switching Electronic Ballast with Unity Power Factor,” IEEE Transaction on Industry Application, vol.29, no.2, pp.953-958 (1993).
[83] M. A. D. Costa, R. N. do Prado, A. Campos, and A. R. Seidel, “An Analysis about Valley Fill Filters Applied to Electronic Ballasts,” IEEE Industrial Electronics Society, vol.1, pp.509-514 (2003).
[84]黃建銘,「填谷濾波變頻式返馳轉換器」,成功大學電機工程系碩士論文,民國九十二年。

無法下載圖示 全文公開日期 2014/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE