簡易檢索 / 詳目顯示

研究生: 陳怡婷
YI-TING CHEN
論文名稱: 氯化鈉輔助大尺寸單晶二硫化鉬之生長
Sodium Chloride-Assisted Growth of Large Sized Single Crystal Molybdenum Disulfide
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡東昇
Dung-Sheng Tsai
楊伯康
Po-kang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 44
中文關鍵詞: 過渡金屬二硫化物二維材料化學氣相沉積
外文關鍵詞: transition metal dichalcogenides, two-dimensional materials, chemical vapor deposition
相關次數: 點閱:302下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,過渡金屬二硫化物因其具有半導體特性、可調遷移率和可撓性等特性而引起了廣泛的關注。為了提供大規模商業生產,有效控制生長參數將是實現大尺寸和層數可調控之二維材料的關鍵。本次研究中,我們嘗試使用氯化鈉作為促進劑,通過化學氣相沉積法在二氧化矽基板上直接生長單晶二硫化鉬二維材料。藉由調控氯化鈉含量以及硫粉溫度等生長條件,可以有效生長單層二硫化鉬單晶,且最大尺寸可達109 μm。經由拉曼、光致發光光譜與原子力顯微鏡證實為單層二硫化鉬。此外,本研究也進一步將已生長的單晶二硫化鉬利用水轉移到預鍍電極之二氧化矽基板上,以製造場效電晶體元件。量測結果顯示二硫化鉬為n型半導體行為,室溫下開關電流比為104,而電子遷移率為0.5 cm2/V-s。本研究提供以氯化鈉作為二硫化鉬二維半導體材料生長之促進劑,以生長可控且大面積之二維材料。


    In recent years, transition metal dichalcogenides (TMD) have attracted significant attention due to their semiconducting properties, tunable mobility, and flexibility. To enable large-scale commercial production, effective control of growth parameters is crucial for achieving controllable two-dimensional (2D) materials with large size and layer control. In this study, we attempted to use sodium chloride (NaCl) as a promoter to directly grow 2D single-crystalline molybdenum disulfide (MoS2) materials on a silicon dioxide (SiO2) substrate through chemical vapor deposition (CVD). By controlling the NaCl content and sulfur powder temperature, we successfully grew monolayer to few-layer MoS2 with size up to 109 μm. The layer number of MoS2 was confirmed through Raman spectroscopy, photoluminescence (PL) spectroscopy, and atomic force microscopy (AFM). Furthermore, the grown single-crystalline MoS2 was transferred onto a pre-patterned SiO2 substrate to fabricate field-effect transistor (FET) devices. The measurements revealed n-type semiconductor behavior for MoS2 with a room-temperature field-effect mobility of 0.5 cm²/V-s. This study provides a method for the controllable growth of large-area 2D materials using NaCl as a promoter for the growth of MoS2 as a 2D semiconducting material.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻探討 4 2.1 過渡金屬二硫化物 4 2.1.1 晶體結構 4 2.1.2 電學性質 6 2.1.3 光學性質 8 2.1.4 拉曼光譜分析 10 2.2 化學氣相沉積法之成長控制 13 2.2.1 大尺寸單晶成長 13 2.2.2 促進劑輔助生長 15 2.3 二維材料之轉移製程 16 第三章 實驗方法與分析儀器 18 3.1 實驗流程 18 3.1.1 基板前處理 19 3.1.2 化學氣相沉積製程 20 3.1.3 單晶二硫化鉬轉移 23 3.2 實驗設備與分析儀器 24 3.2.1 實驗設備 24 3.2.2 分析儀器 26 第四章 結果與討論 28 4.1 氯化鈉含量之參數最佳化 28 4.1.1 晶粒尺寸分析 28 4.1.2 拉曼光譜分析 29 4.1.3 光致發光光譜分析 30 4.1.4 原子力顯微鏡分析 31 4.2 硫粉溫度之參數最佳化 32 4.2.1 晶粒尺寸與形貌分析 32 4.2.2 拉曼光譜分析 33 4.2.3 光致發光譜分析 34 4.2.4 原子力顯微鏡分析 35 4.3 電性量測分析 36 第五章 結論與未來展望 37 5.1 結論 37 參考文獻 38

    [1] International Technology Roadmap for Semiconductors, http://www.itrs2.net/2013-itrs.html.
    [2] M. Chhowalla, D. Jena, H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chem, vol.5, 263-275, 2013.
    [3] I. Ferain, C. A. Colinge, J. P. Colinge, “Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors,” Nature, vol. 479, 310-316, 2011.
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, 666-669, 2004.
    [5] C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, “Recent advances in ultrathin two-dimensional nanomaterials,” Chem. Rev., vol. 117, 6225, 2017.
    [6] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics, vol. 8, 899, 2014.
    [7] Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett., vol. 9, 422-426, 2009.
    [8] Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang, K. Watanabe, T. Taniguchi, Y. Chen, E. J. G. Santos, L. H.Li, “High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion,” Sci. Adv., vol. 5, eaav0129, 2019.
    [9] A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, 183-191, 2007.
    [10] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol., vol. 9, 768-779, 2014.
    [11] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, 1102-1120, 2014.
    [12] B. Cho, M. G. Hahm, M. Choi et al., “Charge-transfer-based gas sensing using atomic-layer MoS2,” Sci Rep, vol. 5, 8052, 2015.
    [13] W. Wu, L. Wang, Y. Li et al., ”Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature, vol. 514, 470-474, 2014.
    [14] A. Pospischil, M. Furchi, T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nature Nanotech, vol. 9, 257-261, 2014.
    [15] D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri, K. Banerjee, “MoS2 field-effect transistor for next-generation label-free biosensors,” ACS Nano, vol. 8, 3992-4003, 2014.
    [16] J. A. Wilson, F. J. D. Salvo, S. Mahajan, “Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides,” Adv. Phys., vol. 24, 117-201, 1975.
    [17] J. C. Meyer, A. G. Geim, M. I. Katnelson, K. S. Novoselov, S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, 60-63, 2006.
    [18] S. Bertolazzi, J. Brivio, A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano, vol. 5, 9703-9709, 2011.
    [19] X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, “Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges,” Chem. Soc. Rev., vol. 44, 8859-8876, 2015.
    [20] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, “3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution,” Chem. Commun., vol. 53, 3054-3057, 2017.
    [21] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. W. Chen, M. Chhowalla, “Coherent atomic and electronic heterostructures of single-layer MoS2,” ACS Nano, vol. 6, 7311-7317, 2012.
    [22] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, 1271-1275, 2010.
    [23] M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Yin, Y. Lu, "Mechanisms and applications of steady-state photoluminescence spectroscopy in two-dimensional transition metal dichalcogenides," ACS Nano, vol. 14, 14579-14604, 2020.
    [24] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H. Zhang, A. Z. Moshfegh, “Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives,” Nanoscale Horiz., vol. 3, 90-204, 2018.
    [25] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, 136805, 2010.
    [26] K. J. I. Ember, M. A. Hoeve, S. L. McAughtrie, M. S. Bergholt, B. J. Dwyer and M. M. Stevens, "Raman Spectroscopy and Regenerative Medicine: a Review," npj Regen. Med., vol. 2, 12, 2017.
    [27] M. Yamamoto, S. T. Wang, M. Ni, Y.-F. Lin, S. L. Li and S. Aikawa, "Strong enhancement of raman scattering from a bulk-inactive vibrational mode in few layer MoTe2," ACS Nano, vol. 8, 3895-3903, 2014.
    [28] G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, Schuller, T. Korn, “Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes” Appl. Phys. Lett., vol. 101, 101906, 2012.
    [29] J. Lee et al., “Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices,” Adv. Mater., vol. 29, 1702206, 2017.
    [30] J. Zhou, J. Lin, X. Huang et al. “A library of atomically thin metal chalcogenides,” Nature, vol. 556, 355-359, 2018.
    [31] B. Shia, D. Zhoua, R. Qiuc, M. Bahria, X. Konga, H. Zhaoa, C. Tlilia, D. Wang, “High-efficiency synthesis of large-area monolayer WS2 crystals on SiO2/Si substrate via NaCl-assisted atmospheric pressure chemical vapor deposition,” Appl. Surf. Sci., vol. 533, 147479, 2020.
    [32] G. Li, X. Wang, B. Han, W. Zhang, S. Qi, Y. Zhang, J. Qiu, P. Gao, S. Guo, R. Long, Z. Tan, X. Song, N. Liu, “Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate,” J. Phys. Chem. Lett., vol. 11, 1570-1577, 2020.
    [33] S. Hu, J. Li, X. Zhan et al., “Aligned monolayer MoS2 ribbons growth on sapphire substrate via NaOH-assisted chemical vapor deposition,” Sci. China Mater., vol. 63, 1065-1075, 2020.
    [34] S. Zhao, L. Wang, L. Fu, “Precise vapor-phase synthesis of two-dimensional atomic single crystals,” iScience, vol. 20, 527-545, 2019.
    [35] N. Bandaru, R. S. Kumar, D. Sneed, O. Tschauner, J. Baker, D. Antonio, S. N. Luo, T. Hartmann, Y. Zhao, R. Venkat, “Effect of pressure and temperature on structural stability of MoS2,” J. Phys. Chem. C, vol. 118, 3230-3235, 2014.
    [36] M. Buscema, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, “The effect of the substrate on the raman and photoluminescence emission of single-Layer MoS2,” Nano Res., vol. 7, 561-571, 2014.
    [37] W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Z. Yang, X. M. Li, H. Yu, X. T. Zhu, R. Yang, D. X. Shi, X. C. Lin, J. D. Guo, X. D. Bai, G. Y. Zhang, “Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2,” J. Am. Chem. Soc., vol. 137, 15632-15635, 2015.
    [38] C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B-Condens Matter, vol. 87, 081307, 2013.
    [39] S. Wang, M. Pacios, H. Bhaskaran, J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology, vol. 27, 085604, 2016.
    [40] Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, “Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate,” Small, vol. 8, 966- 971, 2012.
    [41] A. L. Elias et al., “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano, vol. 7, 5235-5242, 2013.
    [42] S. Lai, J. Jeon, Y. J. Song, S. Lee, “Water-penetration-assisted mechanical transfer of large-scale molybdenum disulfide onto arbitrary substrates,” RSC Adv., vol. 6, 57497-57501, 2016.
    [43] H. Yu et al., “Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films,” ACS Nano, vol. 11, 12001-12007, 2017.
    [44] J. H. Kim, T. J. Ko, E. Okogbue et al., “Centimeter-scale green integration of layer-by-layer 2D TMD vdW heterostructures on arbitrary substrates by water-assisted layer transfer,” Sci Rep, vol. 9, 1641, 2019.
    [45] M. Sharma, A. Singh, R. Singh, “Monolayer MoS2 transferred on arbitrary substrates for potential use in flexible electronics,” ACS Appl. Nano Mater., vol. 3, 4445-4453, 2020.
    [46] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano, vol. 4, 2695-2700, 2010.
    [47] Y. Xie, Z. Wang, Y. Zhan, P. Zhang, R. Wu, T. Jiang, S. Wu, H. Wang, Y. Zhao, T. Nan, X. Ma, “Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications” Nanotechnology, vol.28 084001, 2017.

    QR CODE