簡易檢索 / 詳目顯示

研究生: 盧仕穎
LU,SHI-YING
論文名稱: 開發一雙層過濾晶片可用於全血中分離細胞
Developing a Double-Layer Filtration Chip for Separating and Collecting Blood Cells from Whole Blood
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 陳珮珊
Pai-Shan Chen
蔡宗能
Zong-Neng Cai
葉怡均
Yi-Jun Ye
田維欣
Wei-Xin Tian
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 微型過濾晶片掃流過濾晶片螺旋型流道黏合
外文關鍵詞: Spiral microchannel
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為開發一微型過濾晶片,利用掃流式過濾原理,可用於三種不同尺寸範圍的粒子分離,達成細胞分選之目的,使用商用濾膜將其整合於晶片中,此濾膜擁有成本低廉、易於取得的優點,由於本研究使用之晶片由核孔聚碳酸酯濾膜(Nucleopore Polycarbonate Track-Etch)與聚甲基丙烯酸甲酯基材 (PMMA, Polymethyl methacrylate)組成,在晶片封裝時屬於異質黏合,製程較為複雜,故本研究提出(1)以UV光固化膠黏合製程進行黏合兩種不同的材質,並透過螺旋型流道改善檢體於晶片內流動情況,以降低檢體流動不順的現象;(2)雙層掃流式的結構設計,改善先前實驗第二層過濾效果無法持續提升之問題;(3)循環掃流設計,改善先前實驗因檢體有限,需加入其他溶液,以提升過濾效果問題;(4)以人類全血作為分析濾膜孔徑對於血細胞的分離效率之影響,以及測量細胞的存活率。
在先前實驗結果顯示,使用流道寬4mm深2mm之晶片進行循環雙層掃流,將最終過濾出檢體注回初始檢體,能將過濾效果提升至八成左右。從人類全血測試的實驗結果顯示,最佳結果為使用濾膜孔徑尺寸為3 m和0.8 m,可成功攔截33.06~66.55%白血球,但白血球因數量不足,無法檢測出純度;83.48~86.39%的紅血球,純度為99.9%,並收集四到七成血漿;而由於濾膜孔徑與紅血球細胞大小相近,細胞存活率會略為下降。使用濾膜孔徑尺寸5 m和0.8 m,可成功攔截26.79~64.31%白血球,但白血球因數量不足,無法檢測出純度;59.99~81.95%的紅血球,純度為99.9%,並收集到45.45~60.61%血漿。使用濾膜孔徑尺寸2 m和0.8 m,2 m濾膜可成功攔截84.31~84.53%白血球及45.09~46.63%的紅血球,但由於濾膜孔徑與紅血球相近,易造成溶血,不利後續實驗。


The main purpose of this study is to develop a microfluidic chip, which can separate three different sizes of particles by the principle of cross-flow filtration, and achieve the purpose of cell separating. The filter integrated in the chip is a commercial filter, and the cost is low. The advantages are easy to obtain. However, the material of the filter is different from the chip substrate. It is heterogeneously bonded during chip packaging, and the process is complicated. In this study, two different materials are bonded by UV glue bonding process. The spiral channel improves the flow of the sample in the chip and reduces the phenomenon that the sample flow is not smooth. The double cross-flow filtration structure can make the particles not easily block on the filter, and improve the problems caused by excessive pressure. Circulation design improves the need to add other fluids in previous experiments. Using human whole blood as the analysis of the effect of filter pore size on the separation efficiency of blood cells, and measuring the survival rate of cells. The experimental results show that the use of 4mm wide and 2mm deep chip for double-layer cross-flow, combined with circulating design, can effectively improve the filtration effect, but the separation efficiency can't be increased by more than 80%. Experimental results in blood tests show that the filter pore size is 3 m, 0.8 m, which can successfully intercept 33.06~66.55% white blood cells; 83.48~86.39% of red blood cells, purity 99.9%, 40~72% plasma, but the number of white blood cells is insufficient , The purity can't be detected; Cell survival rate will slight drop. The filter pore size is 5 m, 0.8 m, which can successfully intercept 26.79~64.31% white blood cells; 59.99~81.95% of red blood cells, purity 99.9%, 45~60% plasma. The filter pore size is 2 m, 0.8 m, which can successfully intercept 84% white blood cells and 45~46% red blood cells, but vulnerable to hemolysis.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XVI 符號表 XVII 第一章 導論 1 1.1研究背景 1 1.2研究動機 4 1.3研究方法 7 1.4論文架構 9 第二章 文獻回顧 11 2.1主動式分離技術 11 2.2被動式分離技術 13 2.3掃流式過濾 20 2.4離心分離法 25 第三章 過濾晶片初步設計及結果 27 3.1晶片設計介紹 27 3.2結構設計 29 3.3流動情況相關設計 32 第四章 晶片製程介紹 35 4.1 微銑削 35 4.1.1前言 35 4.1.2 操作與使用方法 37 4.2晶片製造 40 4.2.1上層上蓋、下蓋晶片加工 42 4.2.2上層下蓋背部加工 44 4.2.3下層上蓋、下蓋晶片加工 45 4.2.4上下蓋板晶片加工 47 4.3晶片黏合 48 4.3.1塑膠材料化學黏合 48 4.3.2 UV膠黏合 51 第五章 研究設備與實驗方法 53 5.1研究設備 53 5.1.1製程設備與軟體 53 5.1.2量測設備與軟體 57 5.2實驗方法 62 5.2.1循環掃流實驗 63 5.2.2影像處理 65 5.2.3血細胞存活率測試 68 5.2.4血液注入方向實驗 68 5.2.5血液分離實驗 70 第六章 實驗結果與討論 75 6.1循環掃流實驗 75 6.2注入方向對於存活率測試結果 79 6.3血液分離實驗結果 82 第七章 結論與未來展望 89 7.1結論 89 7.2未來展望 91 文獻 93 附錄A血液分析數據(5µm、0.8 µm) 102 附錄B血液分析數據(2µm、0.8 µm) 105 附錄C血液分析數據(3µm、0.8 µm) 106 附錄D血液分析計算 (5µm、0.8 µm) 107 附錄E血液分析計算 (2µm、0.8 µm) 110 附錄F血液分析計算 (3µm、0.8 µm) 112

[1] S. C. Terry, J. H. Jerman, J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer." IEEE Trans. Electron Devices 26, pp. 1880-1886, 1979.
[2] C. T. Wittwer, G. C. Fillmore, D. J. Garling, "Minimizing the time required for DNA amplification by efficient heat transfer to small samples." Analytical Biochemistry 186, pp. 328–331, 1990.
[3] C. T. Wittwer, D. J. Garling, "Rapid cycle DNA amplification: time and temperature optimization." BioTechniques 10, pp. 76–83, 1991.
[4] Lab-on-Chip.gene-quantification.info.Available:http://www.gene-quantification.de/lab-on-chip.html
[5] http://www.blood.org.tw/Internet/main/docDetail.aspx?uid=6536&pid=6387&docid=23909.
[6] G. M. Whitesides, "The origins and the future of microfluidics." Nature 442, pp. 368-373, 2006.
[7] D. J. Beebe, G. A. Mensing, G. M. Walker, "Physics and application of microfluidics in biology." Annu. Rev. Biomed. Eng 4, pp. 261-286, 2002.
[8] J. E. Drewes, B. Christopher, O. Matthew, X. Pei, T. U. Kim, A. Gary, "Rejection of wastewater-derived micropollutants in high-pressure membrane applications leading to indirect potable reuse." Environmental Progress 24, pp. 400-409, 2005.
[9] K. Aran, A. Fok, L. A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Ündar, J. D. Zahn, "Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery." Lab Chip 11, pp. 2858–2868, 2011.
[10] S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Bergquist, "A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening." Biomed Microdevices 8, pp. 73–79, 2006.
[11] C. Riedhammer, D. Halbritter, R. Weissert, "Peripheral blood mononuclear cells: isolation, freezing, thawing, and culture." Multiple Sclerosis. Humana Press, pp. 53-61, 2014.
[12] M. C. De Almeida, A. C. Silva, A. Barral, M. B. Netto, "A simple method for human peripheral blood monocyte isolation." Memorias do Instituto Oswaldo Cruz 95.2, pp. 221-223, 2000.
[13] I. Doh, Y. H. Cho, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process." Sensor and Actuators A 121, pp. 59-65, 2005.
[14] J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante "Recent advances in optical tweezers." Annual Review of Biochemistry, Vol. 77:205-228, 2008.
[15] M. Yamada, M. Nakashima, M. Seki, "Pinched Flow Fractionation:  Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel." Anal. Chem. 76, pp. 5465-5471, 2004.
[16] E. Sollier, D. E. Go, J. Che, D. R. Gossett, S. O'Byrne, W. M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R. P. Kulkarni and D. D. Carlo, "Size-selective collection of circulating tumor cells using Vortex technology." Lab on chip Issue 1, 2014.
[17] S. S. Kuntaegowdanahalli, et al. "Inertial microfluidics for continuous particle separation in spiral microchannels." Lab on a Chip 9.20, pp. 2973-2980, 2009.
[18] W.R. Dean, "Fluid motion in a curved channel." Proc. Royal Soc. A 121, 402-420, 1928.
[19] S. Shen, F. Zhang, S. Wang, J. Wang, D. Long, D. Wang, Y. Niu, "Ultra-low aspect ratio spiral microchannel with ordered micro-bars for flow-rate insensitive blood plasma extraction." Science Direct Sensors and Actuators B: Chemical, Volume 287, Pages 320-328, 2019.
[20] X. B. Zhang, Z. Q. Wu, K. Wang, J. Zhu, J. J. Xu, X. H. Xia, H. Y. Chen, "Gravitational Sedimentation Induced Blood Delamination for Continuous Plasma Separation on a Microfluidics Chip." Anal. Chem. 84, pp. 3780−3786, 2012.
[21] T. Tachi, N. Kaji, M. Tokeshi, Y. Baba, "Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system." Anal. Chem . 81, pp. 3194–3198, 2009.
[22] J. H. Miao, et al. "Silicon-based microfilters for whole blood cell separation." Biomedical microdevices 10.2, pp. 251-257, 2008.
[23] X. Chen , C. C. Liu, and H. Li. "Microfluidic chip for blood cell separation and collection based on crossflow filtration." Sensors and Actuators B: Chemical 130.1, pp. 216-221, 2008.
[24] Z. Geng, Y. Ju, Q. Wang, W. Wang, Z. Li, "Multi-component continuous separation chip composed of micropillar arrays in a split-level spiral channel." RSC Adv. 3, pp. 14798–14806, 2013.
[25] T. G. Kang, Y. J. Yoon, H. Ji, P. Y. Lim, Y. Chen, "A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures." J. Micromech. Microeng. 24, pp.1-5, 2014.
[26] C. H. Yeh, et al. "Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection." Journal of Micromechanics and Microengineering 24.9, pp. 095013, 2014.
[27] K. Aran, A. Fok, L. A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Ündar, J. D. Zahn, "Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery." Lab Chip 11, pp. 2858–2868, 2011.
[28] M. K. Brakke, "Density Gradient Centrifugation: A New Separation Technique." ACS Publications Soc. 1951, 73, 4, 1847-1848, 1951.
[29] M. Frei, "Organelle Isolation by Centrifugation." BioFiles Volume 6, Number 5.
[30] G. Segre, and A. Silberberg, "Radial particle displacements in Poiseuille flow of suspensions." Nature 189.4760 (1961): 209.
[31] C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review." Microelectronics Journal 35, pp. 131-143, 2004.
[32] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer." Electron Devices, IEEE Transactions on 26, pp. 1880-1886, 1979.
[33] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip." Analytical Chemistry 64, pp. 1926-1932, 1992.
[34] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J.B. Lee, A. Puntambekar, et al, "Disposable smart lab on a chip for point-of-care clinical diagnostics. " Proceedings of the IEEE 92, pp. 154-173, 2004.
[35] P. Mela, A. V. D. Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices."ELECTROPHORESIS 26, pp.1792-1799, 2005.
[36] Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry." Lab on a Chip 5, pp. 869-876, 2005.
[37] M. Bua, T. Melvin, G.J. Ensell, J.S. Wilkinson, A.G.R. Evans, "A new masking technology for deep glass etching and its microfluidic application." Sensors and Actuators A, 115, pp.476-482, 2004.
[38] A. Berthold, P. M. Sarro, M.J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices." Proceedings of the SeSens workshop, 2000.
[39] L. Ceriottia, K. Weibleb, N. F. D. Rooija, E. Verpoortea, "Rectangular channels for lab-on-a-chip applications." Microelectronic Engineering, 67-68, pp.865-871, 2003.
[40] D. Mijatovic, J.C.T. Eijkel, A. V. D. Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up—a review." Lab chip, 5, pp.492-500, 2005.
[41] T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S. J. Williams, "Plastic advances microfluidic devices." Anal Chem, 74, pp. 78A-86A, 2002.
[42] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan, "Fabrication of Plastic Microfluid Channels by Imprinting Methods." Anal. Chem, 69, pp.4783-4789, 1997.
[43] H.Takaoa, K. Miyamurab, H. Ebib, M. Ashikia, K. Sawadaa, M. Ishidaa, "A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test." Sensors and Actuators A, 119, pp.468-475, 2005.
[44] J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. V. D. Wijngaart, G. Stemme, "A liquid-triggered liquid microvalve for on-chip flow control." Sensors and Actuators B, 100, pp.463-468, 2004.
[45] R.Pal, M. Yang, B. N. Johnson, D. T. Burke, M. A. Burns, "Phase Change Microvalve for Integrated Devices." Anal. Chem, 76, pp.3740-3748, 2004.
[46] P. Vulto, T. Huesgen, B. Albrecht, G. A. Urban, "A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist. " J. Micromech. Microeng, 19, 077001, 2009.
[47] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehanb, M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics." Sensors and Actuators B, 114, pp.239-247, 2006.
[48] E. T. Enikov, J. G. Boyd, "Electroplated electro-fluidic interconnects for chemical sensors." Sensors and Actuators, 84, pp.161-164, 2000.
[49] J. Y. Cheng, M. H. Yen, C. W. Wei, Y. C. Chuang, T. H. Young," Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip." J. Micromech. Microeng, 15, pp.1147-1156, 2005.
[50] C. G. K. Malek, "Laser processing for bio-microfluidics applications (part II). " Anal Bioanal Chem, 385, pp.1362-1369, 2006.
[51] W. C. Jung, Y. M. Heo, G. S. Yoon, K. H. Shin, S. H. Chang, G. H. Kim, M. W. Cho," Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips. " Sensors, 7, pp.1643-1654, 2007.
[52] D. S. Zhao, B. Roy, M. T. McCormick, W. G. Kuhr, S. A. Brazill, "Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining." Lab chip, 3, pp.93-99, 2003.
[53] J. S. Mecombera, D. Hurdb, P. A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling." International Journal of Machine Tools & Manufacture, 45, pp.1542-1550, 2005.
[54] M. L. Huperta, W. J. Guya, S. D. Llopisa, C. Situmaa, S. Rania, D. E. Nikitopoulosa, S. A. Soper, "High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters." Proc. of SPIE, 6112, pp.61120B1-12, 2005.
[55] M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, R. Hergenrödera, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices." Lab chip, 4, pp.220-224, 2004.
[56] G. S. Fiorini, D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application." BioTechniques, 38, pp. 429-446, 2005.
[57] H. D. Rowland and W. P. King, "Polymer deformation and filling modes during microembossing." Journal of Micromechanics and Microengineering, 14, 1625, 2004.
[58] S. K. Sia and G. M. Whitesides,"Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies." Electrophoresis ,24,3563-3576, 2003.
[59] Y. C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding." Journal of Micromechanics and Microengineering,14, 415, 2004.
[60] P. C. Chen, C. W. Pan, W. C. Lee, and K.M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate." The International Journal of Advanced Manufacturing Technology, 71, 1623-1630, 2014.
[61] M. L. Huperta, W. J. Guya, S. D. Llopisa, C. Situmaa, S. Rania, D. E. Nikitopoulosa, S. A. Soper,"High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters." Proc. of SPIE, 6112, 61120B1-61120B 12, 2005.
[62] H. Richard, et al. "Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures." Australian journal of chemistry 63.8, pp. 1173-1178, 2010.
[63] H. Tanisugi, H. Ohnuma, and T. Kotaka, "Swelling Behavior of Bisphenol-A Polycarbonate–Polyoxyethylene Multiblock Copolymers in Ethanol/Water Mixtures." Polymer journal 16.8, pp. 633, 1984.
[64] L. H. Duong ,應用於熱塑性材料微流體晶片之新型溶劑黏合方法,國立台灣科技大學機械工程研究所,2016.
[65] V. Liu, M. Patel and A. Lee, "A microfludic device for blood cell sorting and morphology analysis." 1Flintridge Preparatory School, La Canada Flintridge, CA 91011, USA. 2Department of Biomedical Engineering, University of California, Irvine
[66] https://zh.wikipedia.org/wiki/%E7%99%BD%E8%A1%80%E7%90%83.
[67] S. Tripathi, Y. V. B. V. Kumarl, A. Prabhakar, S. S. Joshi and A. Agrawal, "Performance study of microfluidic devices for blood plasma separation-a designer’s perspective." J. Micromech. Microeng. 25 , 2015.
[68] L. I. Amar, D. Guisado, M. Faria, J. P. Jones, C. J. M. van Rijn, M. I. Hill and E. F. Leonard, "Erythrocyte fouling on micro-engineered membranes." Springer Link Biomedical Microdevices 20, Article number: 55, 2018.
[69] M. N. Dickson, L. Amar, M. Hill, J. Schwartz and E. F. Leonard, "A scalable, micropore, platelet rich plasma separation device." Biomedical Microdevices volume 14, pages 1095–1102, 2012.
[70] A. C. Enten, M. P. I. Leipner, M. C. Bellavia, L. E. King and T. A. Sulchek, "Optimizing Flux Capacity of Dead-end Filtration Membranes by Controlling Flow with Pulse Width Modulated Periodic Backflush." Scientific Reports 10, Article number: 896, 2020.

無法下載圖示 全文公開日期 2025/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE