簡易檢索 / 詳目顯示

研究生: 趙栢陞
Bo-Sheng Zhao
論文名稱: 四階層飛馳電容型圖騰柱功率因數修正器研製
Design and Implementation of Four Level Flying Capacitor Totem Pole Power Factor Correction
指導教授: 林景源
Jing-Yuan Lin
口試委員: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
張佑承
You-Cheng ZHANG
王建民
Jian-Min Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 圖騰柱多階層飛馳電容氮化鎵開關數位控制
外文關鍵詞: totem pole, multi-level, flying capacitor, GaN device, digital control
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將介紹四階層飛馳電容型圖騰柱功率因數修正器,傳統二階層圖騰柱操作於連續導通模式下,硬切損失的關係使得切換頻率受限於低頻切換,因此難以將磁性元件小型化,與傳統二階層圖騰柱相比,四階層飛馳電容型圖騰柱是透過飛馳電容來達成多顆功率開關疊接的架構,使用相移式脈波寬度調變技術,使電感上等效漣波頻率增加數倍,電感可以小型化來獲取更高的功率密度,並透過飛馳電容平衡每顆關關上的電壓,藉以使用低電壓應力的200V氮化鎵開關,同時讓開關節點上電壓有數種變化,可減小電感上的感應電動勢,較低的dv/dt使電磁干擾上影響較小,並探討階層數對於電感電流漣波之影響、分析電路動作原理、控制迴路與補償器,以及圖騰柱在輸入電壓零交越時之突波電流與同步整流開關控制策略的問題。為驗證分析,將以電力電子系統模擬軟體(PSIM 11.0)來模擬電路的實際工作狀況。本論文實現一輸入電壓從90到264 Vrms,輸出功率2.6 kW,直流輸出電壓380 V,峰值效率最高達99.11 %與功率因數最高達0.99之高效率、高密度、高功率與高功率因數之數位控制功率因數修正器。


This thesis introduces a Four-Level Flying Capacitor Totem-Pole Power-Factor-Correction (PFC), conventional Two-Level Totem-Pole operate at Continuous Conduction Mode (CCM), the hard switching loss issue limit PFC converter work at low switching frequencies, hence it’s difficult to miniaturize the magnetic element. Compared with the con-ventional Two-Level Totem-Pole PFC, this Four-Level Totem-Pole PFC is a cascaded connection power switch topology by Flying Capacitor, Using Phase-Shift Pulse Width-Modulation (PSPWM), so that inductor equivalent frequency increase several-fold, the inductor can be minia-turized for higher power density, and balance the voltage on each switch through the flying-capacitor, so as to utilizes the low voltage GaN de-vices, so let switching node have various voltage, reduce the voltage stress on the inductor, lower dv/dt makes EMI less impactful, then discuss the effect of the number of level on the inductor current ripple, analyze the operation principle, control loop and compensator, moreover totem pole current spike issue at input voltage zero crossing and synchronous switch control strategy issue. To validate the analysis, use power elec-tronics simulation software (PSIM 11.0) to simulate the actual operation of the circuit. This paper realizes a high-efficiency, high-density, high-power and high-power-density PFC with an input voltage from 90 to 264 Vrms, an output power of 2.6 kW, a DC output voltage of 380 V, an efficiency of 99.11% and a power factor of 0.99.

目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vii 表索引 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 5 第二章 四階層飛馳電容型圖騰柱功率因數修正器架構分析 6 2.1 架構介紹 6 2.2 階層數的比較與分析 9 2.3 四階層飛馳電容型圖騰柱電路介紹與動作區間分析 13 2.3.1 電路介紹 13 2.3.2 電路動作區間分析 15 2.3.3 直流增益推導 21 2.3.4 飛馳電容平均電壓推導 21 2.3.5 輸入電感電流漣波推導 22 2.3.6 飛馳電容漣波電壓推導 24 第三章 電路硬體設計與損失分析 26 3.1 元件設計 26 3.1.1 電感設計 26 3.1.2 開關選擇 30 3.1.3 飛馳電容設計 31 3.2 功率損失分析 33 3.2.1 快速臂開關損失 33 3.2.2 慢速臂開關損失 37 3.2.3 輸入電感損失 38 3.2.4 輸出電容損失 39 3.2.5 效率預估 40 第四章 四階層飛馳電容型圖騰柱功率因數修正器控制分析 43 4.1 控制迴路分析 43 4.1.1 電流迴路分析 46 4.1.2 電壓迴路分析 57 4.2 圖騰柱功率因數修正器控制問題 63 4.2.1 同步整流開關控制問題 63 4.2.2 零交越電感電流突波控制問題 66 4.2.3 多階層之電感電流取樣點問題 73 4.3 數位訊號處理器實現圖騰柱控制流程 76 4.3.1 系統初始化與設定流程 76 4.3.2 中斷服務程序流程 77 4.3.3 PFC狀態機 81 第五章 電路模擬與實驗結果 83 5.1 模擬結果 83 5.1.1 模擬電路圖 83 5.1.2 模擬波形 87 5.2 實驗結果 88 第六章 結論與未來展望 98 6.1 結論 98 6.2 未來展望 98 參考文獻 100

[1] ENERGY STAR Program Requirements for Computer Servers. [Online]. Available:
https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Computer%20Servers%20Program%20Requirements_0.pdf
[2] 80 PLUS Test Protocol, Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies [Online]. Available:
https://plugloadsolutions.com/docs/collatrl/print/Generalized_Int ernal_Power_Supply_Efficiency_Test_Protocol_R6.7.pdf
[3] W ikipedia IEC 61000-3-2. [Online]. Available:
https://en.wikipedia.org/wiki/IEC_61000-3-2
[4] “Power Factor Correction Handbook”, ON Semiconductor, 2014.
[5] L. Xue, Z. Shen, D. Boroyevich and P. Mattavelli, "GaN-based high frequency totem-pole bridgeless PFC design with digital imple-mentation," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 759-766, doi: 10.1109/APEC.2015.7104435.
[6] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Chal-lenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Elec-tronics, Intelligent Motion, Renewable Energy and Energy Man-agement, 2015, pp. 1-8.
[7] Infineon Evaluation Boards [Online]. Available:
https://www.infineon.com/cms/en/product/evaluation-boards/eval_2500w_pfc_gan_a/
[8] Infineon Evaluation Boards. [Online]. Available:
https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_TP_PFC_SIC-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626fc1ce0b016fc2ae66e20040
[9] Jae-Hyun Kim, Gun-Woo Moon and Jae-Kuk Kim, "Ze-ro-voltage-switching totem-pole bridgeless boost rectifier with re-duced reverse-recovery problem for power factor correction," Pro-ceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1044-1048.
[10] K. S. Muhammad and Dylan Dah-Chuan Lu, "Two-switch ZCS totem-pole bridgeless PFC boost rectifier," 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.
[11] GaN System Application Notes. [Online]. Available:
https://gansystems.com/wp-content/uploads/2021/07/GN001_An-Introduction-to-GaN-E-HEMTs-210720.pdf
[12] Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser, GaN Transistor for Efficient Power Conversion. USA, CA: John Wiley & Sons, 2020.
[13] T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference, 1992, pp. 397-403 vol.1.
[14] Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," in IEEE Trans-actions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, Nov. 2017.
[15] I. Moon et al., "Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor cor-rection," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 67-73.
[16] T. T. Vu and G. Young, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 1835-1841.
[17] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. de Rooij, "3kW Four-Level Flying Capacitor Totem-Pole Bridgeless PFC Rectifier with 200V GaN Devices," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 81-88.
[18] T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference, 1992, pp. 397-403 vol.1.
[19] Efficient Power Conversion, EPC2034C Datasheet [Online] Availa-ble:
https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2034C_datasheet.pdf
[20] Infineon, IPT60R022S7XTMA1 Datasheet [Online] Available:
https://www.mouser.tw/datasheet/2/196/Infineon_IPT60R022S7_DataSheet_v02_01_EN-1622504.pdf
[21] S. Qin et al., "A high power density power factor correction front end based on a 7-level flying capacitor multilevel converter," 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), 2016, pp. 1-6, doi: 10.1109/SPEC.2016.7846223.
[22] S. Qin, Z. Liao, Z. Ye, D. Chou, N. Brooks and R. C. N. Pi-lawa-Podgurski, "A 99.1% efficient, 490 W/in3 power density power factor correction front end based on a 7-level flying capacitor multilevel converter," 2018 IEEE Applied Power Electronics Con-ference and Exposition (APEC), 2018, pp. 729-736, doi: 10.1109/APEC.2018.8341093.
[23] S. Buso, P. Mattavelli, L. Rossetto and G. Spiazzi, "Simple digital control improving dynamic performance of power factor preregula-tors," in IEEE Transactions on Power Electronics, vol. 13, no. 5, pp. 814-823, Sept. 1998, doi: 10.1109/63.712280.
[24] Jian Sun, "On the zero-crossing distortion in single-phase PFC converters," in IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 685-692, May 2004, doi: 10.1109/TPEL.2004.826491.
[25] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Elec-tronics, vol. 52, no. 1, pp. 108-115, Feb. 2005, doi: 10.1109/TIE.2004.841127.
[26] CoolGaN™ totem-pole PFC design guide and power loss modeling. [Online]. Available:
https://www.infineon.com/dgdl/Infineon-Design_guide_Gallium_Nitride-CoolGaN_totem-pole_PFC_power_loss_modeling-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626d82c047016d95daec4a769a
[27] 吳義利,切換式電源轉換器,初版,高雄:文笙書局,2012年。
[28] 陳明正,圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略,國立臺灣科技大學電子工程系博士論文,2018年。
[29] 鄭又睿,四階層飛馳電容型圖騰柱功率因數修正器之研製,國立臺灣科技大學電子工程系碩士論文,2021年。

無法下載圖示 全文公開日期 2025/09/19 (校內網路)
全文公開日期 2025/09/19 (校外網路)
全文公開日期 2025/09/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE