簡易檢索 / 詳目顯示

研究生: 王致中
Zhi-Zhong Wang
論文名稱: 具損失最小化之鋰離子電池定溫度-定電壓充電法
Constant Temperature-Constant Voltage Charging Strategy with Energy Losses Minimization for Lithium-ion Batteries
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉益華
Yi-Hua Liu
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
陳冠炷
Guan-Jhu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 鋰離子電池定溫度-定電壓充電法損失最小化儲能系統
外文關鍵詞: Lithium-ion Battery, CT-CV Charging Strategy, Losses Minimization, Energy Storage System
相關次數: 點閱:211下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

充電技術與鋰離子電池的性能表現以及循環壽命長短息息相關,而良好的充電技術必須同時考量充電效率、循環壽命、充電時間以及電池溫升等因素。現今大多數的充電策略僅考量充電時間以及充電損失,卻忽略電池溫度也是影響電池壽命的關鍵因素,因此本文提出基於電池等效電路模型具最小化損失之定溫度-定電壓充電法。本文之充電法分為三個階段,第一階段使用2C進行定電流(Constant Current, CC)充電,此階段加快電池充電速度但會使溫度快速上升;第二階段為定溫度充電,此階段根據電池溫度回授並透過PID控制器調控充電電流大小使得電池溫度保持固定;第三階段為定電壓(Constant Voltage, CV)充電,此階段以一固定電流持續充電至電流小於充電截止電流為止。為了找出最適合的轉態時間,本文根據庫倫積分及電池等效電路模型模擬不同轉態時間之充電時間與充電損失,因此不須進行多次的實際實驗。由實驗結果可知,本文提出之充電策略相較於相同平均溫升之定電流-定電壓(Constant Current-Constant Voltage, CC-CV)充電法改善18.6 %的充電時間及3.68 %的最大溫升。相較於相同充電時間之CC-CV充電法,所提方法則可改善11.6 %的平均溫升及5.92 %的最大溫升。


The performance and cycle life of lithium-ion batteries are closely related to charging techniques. A good charging technique should consider factors such as charging efficiency, cycle life, charging time, and battery temperature. However, most existing charging strategies only focus on charging time and charging losses while overlooking the crucial factor of battery temperature, which significantly affects battery life. Therefore, this thesis proposes a minimum-loss temperature-controlled constant voltage charging method based on a battery equivalent circuit model (ECM).
The charging method in this study consists of three stages. In the first stage, a constant current (CC) charging at 2C is applied to accelerate the charging process, but it results in a rapid temperature rise. The second stage is temperature-controlled charging, where the charging current is adjusted through a PID controller based on the battery temperature feedback to maintain a fixed temperature. The third stage is constant voltage (CV) charging, which continues until the charging current drops below the termination current. To determine the optimal transition times, this thesis utilizes Coulomb counting method and battery ECM simulations to evaluate the charging time and losses for different transition times, eliminating the need for multiple physical experiments.
Experimental results demonstrate that the proposed charging strategy improves the charging time by 18.6% and reduces the maximum temperature rise by 3.68% compared to the constant current-constant voltage (CC-CV) charging method with the same average temperature rise. Compared to the CC-CV charging method with the same charging time, the proposed method achieves an improvement of 11.6% in average temperature rise and 5.92% in maximum temperature rise.

摘要 I Abstract II 誌謝 IV 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3 研究動機及目的 3 1.4 論文大綱 4 第二章 電池管理系統及鋰離子電池之充電技術介紹 5 2.1 鋰離子電池名詞介紹 5 2.2 電池管理系統 7 2.2.1 電池管理系統硬體架構 7 2.2.2 電池管理系統韌體設計 10 2.3 鋰離子電池充電技術介紹 12 2.3.1 定電壓充電法(CV) 12 2.3.2 定電流充電法(CC) 12 2.3.3 定電流-定電壓充電法(CC-CV) 13 2.3.4 多階段定電流充電法(MSCC) 14 2.3.5 定溫度-定電壓充電法(CT-CV) 15 2.4 本文使用之電池介紹 17 第三章 電池等效電路模型與定溫度定電壓充電法 18 3.1 鋰離子電池等效電路模型 18 3.1.1 理想電池等效電路模型 18 3.1.2 線性電池等效電路模型 19 3.1.3 戴維寧電池等效電路模型 20 3.2 鋰離子電池交流阻抗分析 20 3.2.1 交流阻抗分析流程 21 3.2.2 交流阻抗實驗流程規劃 22 3.2.3 交流阻抗之資料分析 24 3.3 損失最小化之定溫度-定電壓充電法之實現 30 3.3.1 電池等效電路模型於最佳化之應用 30 3.3.2 定溫度-定電壓充電法公式推導 32 3.3.3 適應值評估方式 34 第四章 電池充電機硬體架構 38 4.1 降壓式轉換器介紹 38 4.2 同步降壓式轉換器工作原理 40 4.3 同步降壓式轉換器之元件參數設計 43 4.3.1 電感值計算 43 4.3.2 電容值計算 44 4.4 充電機硬體量測波形 44 第五章 電池充電機韌體架構 47 5.1 數位訊號處理器 48 5.2 韌體程式設計流程 52 5.3 數位PID控制器之 53 5.4 監控平台 54 第六章 模擬與實驗結果 56 6.1 定溫度-定電壓充電法最佳化模擬結果 56 6.2 實驗環境與參數設定 57 6.3 實測結果 59 6.3.1 不同轉態時間之損失最小化CT-CV之比較 59 6.3.2 不同PID參數之比較 60 6.3.3 損失最小化CT-CV與各案例之比較 62 第七章 結論與未來展望 65 7.1 結論 65 7.2 未來展望 66 參考文獻 67

[1] 羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
[2] 陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,台灣科技大學電機工程碩士論文,民國一零一年七月。
[3] 柯俊偉,「智慧型電池模組之可程控充電機設計」,台灣科技大學電機工程碩士論文,民國一零一年七月。
[4] 李易玹,「鋰離子電池新型充電方法之研究」,台灣科技大學電機工程碩士論文,民國一零二年七月。
[5] 劉俊良,「以模糊田口為基礎之新型電池充電機」,台灣科技大學電機工程博士論文,民國一零三年七月。
[6] 陳冠炷,「以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現」,台灣科技大學電機工程碩士論文,民國一零三年七月。
[7] 連于瑄,「具CAN Bus通訊之鋰離子電池容量估測系統」,台灣科技大學電機工程碩士論文,民國一零五年七月。
[8] 劉元凱,「以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋」,台灣科技大學電機工程碩士論文,民國一零七年六月。
[9] 林哲綱,「以模型預測控制為基礎之鋰離子電池充電演算法」,台灣科技大學電機工程碩士論文,民國一零八年六月。
[10] 林韋盛,「可縮短平衡時間之鋰離子電池組平衡器」,台灣科技大學電機工程碩士論文,民國一零八年六月。
[11] 鍾瑋芯,「鋰離子電池充電方法之評估」,台灣科技大學電機工程碩士論文,民國一零九年六月。
[12] A. Bessman et al., “Challenging Sinusoidal Ripple-Current Charging of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4750-4757, June 2018.
[13] 孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
[14] H. K. T. Tsang, Y. C. Fong, K. L. J. Kan, S. R. Raman and K. W. E. Cheng, “A Study of LLC Converter with Buck Converter for CC-CV Charging,” Conference on Power Electronics Systems and Applications, pp. 1-5, December 2020.
[15] K.M. Tsang and W.L. Chan, “Current sensorless quick charger for lithium-ion batteries,” Energy Conversion and Management, vol. 52, pp.1593-1595, March 2011.
[16] P. H. L. Notten, J. H. G. Op het Veld, and J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept,” Journal of power Source, Vol. 145, No. 1, pp. 89-94, July 2005.
[17] Guan-Chyun Hsieh, Liang-Rui Chen, and Kuo-Sun Huang, “Fuzzy controlled lithium-Ion battery charge system with active state of charge controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
[18] Liang-Rui Chen, Roy Chaoming Hsu and Chuan-Sheng Liu, “A design of a grey-predicted lithium-ion battery charge system,” IEEE Transactions on Industrial Electronics, vol. 51, no. 6, June 2008.
[19] L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, “Current pumped battery charger,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2482- 2488, June 2008. 
[20] Chien-Hsing Lee, Ming-Yang Chen and Shih-Hsien Hsu, Joe-Air Jiang, “Implementation of a SOC-based four-stage constant current charger for Li-ion batteries”, Journal of Energy Storage, vol. 18, pp.528-537, August 2018.
[21] Chien-Hsing Lee, Ting-Wei Chang and Shih-Hsien Hsu, Joe-Air Jiang, “Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries”, Journal of Energy Storage, vol. 21, pp.301-309, February 2019.
[22] M. M. Alhaider, E. M. Ahmed, M. Aly, H. A. Serhan, E. A. Mohamed and Z. M. Ali, “New Temperature-Compensated Multi-Step Constant-Current Charging Method for Reliable Operation of Battery Energy Storage Systems, ” IEEE Access, vol. 8, pp. 27961-27972, February 2020.
[23] L. R. Chen, “A Design of an Optimal Battery Pulse Charge System by Frequency-Varied Technique,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, pp.398-405, February 2007.
[24] B. K. Purushothama and U. Landau, “Rapid Charging of Lithium-Ion Batteries Using Pulsed Currents,” Journal of The Electrochemical Society, Vol. 153, No. 3, pp. A533-A542, January 2006.
[25] L. Patnaik, A. V. J. S. Praneeth and S. S. Williamson, “A Closed-Loop Constant-Temperature Constant-Voltage Charging Technique to Reduce Charge Time of Lithium-Ion Batteries, ” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1059-1067, February 2019.
[26] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。 
[27] Texas Instrument, “BQ769x0 3-Series to 15-Series Cell Battery Monitor Family for Li-Ion and Phosphate Applications”, SLUSBK2I, March 2022.
[28] Texas Instrument, “bq769x0 Family Top 10 Design Considerations”, Maych 2016.
[29] Texas Instruments, “bq78350 CEDV Li-Ion Gas Gauge and Battery Management Controller Companion to the bq769x0 Battery Monitoring AFE”, SLUSB48 datasheet, July 2014.
[30] Texas Instrument, “bq76200 high-voltage battery pack front-end charge/discharge high-side NFET driver”, SLUSC16B, March 2019.
[31] 劉峰其,「非線性鋰電池之充放電模型」,國立中央大學電機工程 碩士論文,民國九十九年六月。
[32] T. Kim, and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Transactions. on Energy Conversion, Vol 26, No. 4, pp. 1172-1180, December 2011.
[33] Texas Instruments, “TMS320F28004x Piccolo Microcontrollers,” Available at http://www.ti.com/.

QR CODE