簡易檢索 / 詳目顯示

研究生: Tadele Mamo Wolde
Tadele Mamo Wolde
論文名稱: 數據驅動法預測鋰離子電池健康狀態之研究
State of Health Prediction for Lithium-ion Batteries Using Some Data-Driven Methods
指導教授: 王福琨
Fu-Kwun Wang
口試委員: James T. Lin
James T. Lin
王福琨
Fu-Kwun Wang
葉瑞徽
Ruey Huei Yeh
歐陽超
Chao Ou-Yang
徐世輝
Shey-Huei Sheu
林義貴
Yi-Kuei Lin
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 140
中文關鍵詞: 鋰離子電池預後方法健康狀態預測
外文關鍵詞: prognostic methods, state-of-health prediction
相關次數: 點閱:170下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著設備的退化,測得的系統參數可用於顯示系統退化情況。因此,需要故障預測和健康管理的技術與方法來延長系統或組件的壽命。現行最可執行預測的方法與最終目標是準確預測系統或組件狀態,例如健康狀態(SOH),充電狀態(SOC)和剩餘使用壽命(RUL)。由於電力的儲能系統快速發展,考量成本、性能和耐用性,本論文介紹了鋰離子電池的健康狀態預測和剩餘使用壽命。本論文的目的是為電池的健康狀態預測和剩餘使用壽命進而開發改進的預測方法研究。論文內容包括對現有預測模型與演算法的全面比較,以探索改進的方法。在徹底查閱現有的預測模型與演算法之後,提出了四種改進鋰離子電池的預測模型與演算法。本研究詳細介紹了這些預測模型與演算法並通過使用公共數據集進行了驗證並討論了改進鋰離子電池健康狀態預測模型與演算法的研究方法,包括採用差分進化演算法的支持向量回歸,採用人工蜂群算法的梯度提升回歸,集成模型以及基於長短期記憶-注意力模型。長短期記憶-注意力模型用於估計電池SOC,而其他模型則用於預測鋰離子電池的SOH和RUL。性能指標,例如平均絕對百分比誤差(MAPE),平均絕對誤差(MAE),均方根誤差(RMSE),絕對誤差(AE)和最大誤差(MAX),用於比較預測模型與演算法的精準度。最後,與現行的預測模型與演算法相比,本研究提出的預測模型與演算法方法均顯示出優於現行預測模型與演算法的預測結果。


    Measured system parameters tend to change as equipment degrades, which can be used to characterize system degradation. For this reason, a prognostic and health management discipline is needed recently to manage and possibly extend the lifespan of technological systems or components. The ultimate goal of the most prognostic approach is to accurately predict system or component states such as the state of health (SOH), state of charge (SOC), and remaining useful life (RUL). This dissertation introduces a state of health prediction for lithium-ion batteries due to the rapid development, cost, performance, and durability of the energy storage system. The aim of this work is to develop improved prognostic approaches for battery state of health prediction. The approaches followed include comprehensive comparisons of existing prognostic approaches for exploring improved methods. Following a thorough review of existing prognostic methods, four improved prediction methods are proposed for lithium-ion batteries. Chapter 3 explains the details of these proposed methods, which are validated by using public datasets. The results of the improved state of health prediction methods for lithium-ion batteries are discussed in chapter four, which includes support vector regression with differential evolution algorithm, gradient boosted regression with artificial bee colony algorithm, ensemble model, and attention-based long short-term memory. The last model is used to estimate battery SOC, while the other models are used to predict the SOH and RUL of the lithium-ion batteries. Performance metrics, such as mean absolute percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE), absolute error (AE), and maximum error (MAX), are used to compare the prognostic approaches. In all cases, the proposed methods have shown improved performance compared to existing methods.

    摘要 ii Abstract iii Acknowledgment iv Table of Contents v List of Figures viii List of Tables x Acronyms xii Chapter One 1 Introduction 1 1.1. Background 1 1.2. Statement of the Problem 5 1.3. Objectives of the Study 6 1.4. Organization of the Dissertation 7 Chapter Two 8 State of Health Prediction Methods for Lithium-ion Batteries 8 2.1. State of Health Prediction 8 2.2. State of Charge Estimation 12 2.3. Differential Evolution and Artificial Bee Colony Algorithms 15 2.4. Metrics for Comparison of Prognostic Approaches 18 Chapter Three 19 Improved State of Health Prediction Methods for Lithium-ion Batteries 19 3.1. Support Vector Regression with DE Algorithm for SOH and RUL Prediction of Li-ion Batteries 19 3.2. Gradient Boosted Regression with ABC Algorithm for Capacity Degradation Trend and RUL Prediction of Prismatic Cell 23 3.3. Ensemble Model for Capacity Degradation Trend and RUL Prediction of Lithium-ion Batteries 28 3.4. Attention-based LSTM Model for Battery SOC Estimation 32 Chapter Four 38 State of Health Prediction for Lithium-ion Batteries 38 4.1. RUL Prediction Using SVR-DE Model 38 4.1.1. Datasets 38 4.1.2. SOH Prediction 39 4.1.3. RUL Prediction 42 4.1.4. Conclusions 43 4.2. Prismatic Cells Capacity Degradation and RUL Prediction Using GBR-ABC Model 44 4.2.1. Datasets 44 4.2.2. SOH Prediction 45 4.2.3. RUL Prediction 51 4.2.4. GBR-ABC Model Performance for Unseen Datasets 56 4.2.5. Conclusions 58 4.3. Ensemble Model for Capacity Degradation and RUL Prediction 59 4.3.1. Datasets 59 4.3.2. SOH Prediction 61 4.3.3. RUL Prediction 66 4.3.4. Model Validation for Unseen Datasets 69 4.3.5. Conclusions 70 4.4. SOC Estimation Using Attention-based LSTM Model 71 4.4.1. Datasets 71 4.4.2. SOC Estimation 72 4.4.3. Conclusions 83 Chapter Five 84 Conclusions and Future Study 84 5.1. Conclusions 84 5.2. Future Study 86 Appendices 87 Appendix I: R-code for SVR-DE Model 87 Appendix II: R-code for GBR-ABC Model 91 Appendix III: R-code for Ensemble Model. 94 Appendix IV: R-code for Attention-based LSTM Model. 107 References 114

    1. Gu F, Guo J, Yao X, Summers P A, Widijatmoko SD, Hall P. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. Journal of Cleaner Production. 2017, 161, 765-780.
    2. Mansouri SS, Karvelis P, Georgoulas G, Nikolakopoulos G. Remaining useful battery life prediction for UAVs based on machine learning. IFAC-PapersOnLine. 2017;50:4727-4732.
    3. Zhang Y, Xiong R, He H, Pecht MG. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology. 2018;67(7):5695-5705.
    4. Li X, Zhang L, Wang Z, Dong P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. Journal of Energy Storage. 2019;21:510-518.
    5. Li Y, Zou C, Berecibar M, Nanini-Maury E, Chan JCW, van den Bossche P, Van Mierlo J, Omar N. Random forest regression for online capacity estimation of lithium-ion batteries. Applied Energy. 2018;232:197-210.
    6. Mishra M, Martinsson J, Rantatalo M, Goebel K. Bayesian hierarchical model-based prognostics for lithium-ion batteries. Reliability Engineering and System Safety. 2018;172:25-35.
    7. An D, Kim NH, Choi JH. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliability Engineering & System Safety. 2015;133:223-236.
    8. Richardson RR, Osborne MA, Howey DA. Gaussian process regression for forecasting battery state of health. Journal of Power Sources. 2017;357:209-219.
    9. Richardson RR, Birkl CR, Osborne MA, Howey DA. Gaussian process regression for in situ capacity estimation of lithium-ion batteries. IEEE Transactions on Industrial Informatics. 2018;15(1):127-138.
    10. Zhou D, Yin H, Fu P, Song X, Lu W, Yuan L, Fu Z. Prognostics for state of health of lithium-ion batteries based on Gaussian process regression. Mathematical Problems in Engineering. 2018.
    11. He YJ, Shen JN, Shen JF, Ma ZF. State of health estimation of lithium‐ion batteries: A multiscale Gaussian process regression modeling approach. AIChE Journal. 2015;61(5):1589-1600.
    12. Yu J. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliability Engineering & System Safety. 2018;174:82-95.
    13. Liu T, Pan Z, Sun Q, Feng J, Tang Y. Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2017;231(1):69-80.
    14. Zhou Y, Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectronics Reliability. 2016;65:265-273.
    15. Xu X, Li Z, Chen N. A hierarchical model for lithium-ion battery degradation prediction. IEEE Transactions on Reliability. 2015;65(1):310-325.
    16. Han J, Kambel M. Data Mining: Concepts and Techniques, Mor.2012
    17. Liu J, Li YF, Zio E. A SVM framework for fault detection of the braking system in a high speed train. Mechanical Systems and Signal Processing. 2017;87:401-409.
    18. Zhou X, Hsieh SJ, Peng B, Hsieh D. Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support vector machine with time-resolved thermography. Microelectronics Reliability. 2017; 79:48-58.
    19. Gao D, Huang M. Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization. Journal of Power Electronics. 2017;17(5):1288-1297.
    20. Ma C, Zhai X, Wang Z, Tian M, Yu Q, Liu L, Yang X. State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble. International Journal of Machine Learning and Cybernetics. 2019;10(9):2269-2282.
    21. Hu C, Jain G, Schmidt C, Strief C, Sullivan M. Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources. 2015;289:105-113.
    22. Lee J, Kwon D, Pecht MG. Reduction of Li-ion Battery Qualification Time Based on Prognostics and Health Management. IEEE Transactions on Industrial Electronics. 2018;66(9):7310-7315.
    23. Li H, Pan D, Chen CP. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2014;44(7):851-862.
    24. Zhang C, He Y, Yuan L, Xiang S. Capacity prognostics of lithium-ion batteries using EMD denoising and multiple kernel RVM. IEEE Access. 2017;5:12061-12070.
    25. Liu D, Zhou J, Liao H, Peng Y, Peng X. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2015;45(6):915-928.
    26. You GW, Park S, Oh D. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Applied Energy. 2016;176:92-103.
    27. Razavi-Far R, Chakrabarti S, Saif M, Zio E. An integrated imputation-prediction scheme for prognostics of battery data with missing observations. Expert Systems with Applications. 2019;115:709-723.
    28. Lu X, Ju Y, Wu L, Fan J, Zhang F, Li Z. Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. Journal of Hydrology. 2018;566:668-684.
    29. Wu L, Huang G, Fan J, Zhang F, Wang X, Zeng W. Potential of kernel-based nonlinear extension of Arps decline model and gradient boosting with categorical features support for predicting daily global solar radiation in humid regions. Energy Conversion and Management. 2019;183:280-295.
    30. Torres-Barrán A, Alonso Á, Dorronsoro JR. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing. 2019;326(1):151-160.
    31. Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32.
    32. Xing Y, Ma EW, Tsui KL, Pecht M. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability. 2013;53(6):811-820.
    33. Yu J. State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model. IEEE Transactions on Instrumentation and Measurement. 2015;64(11):2937-2949.
    34. Li F, Xu J. A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter. Microelectronics Reliability. 2015;55(7):1035-1045.
    35. Liao L, Köttig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability. 2014;63(1):191-207.
    36. Cadini F, Sbarufatti C, Cancelliere F, Giglio M. State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Applied Energy. 2019;235:661-672.
    37. Bai G, Wang P, Hu C. A self-cognizant dynamic system approach for prognostics and health management. Journal of Power Sources. 2015;278:163-174.
    38. Wang D, Miao Q, Pecht M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. Journal of Power Sources. 2014;239:253-264.
    39. Li LL, Liu ZF, Tseng ML, Chiu AS. Enhancing the Lithium-ion battery life predictability using a hybrid method. Applied Soft Computing. 2019;74:110-121.
    40. Dong H, Jin X, Lou Y, Wang C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. Journal of Power Sources. 2014;271:114-123.
    41. Yang F, Li W, Li C, Miao Q. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy. 2019;175:66-75.
    42. Anton JCA, Nieto PJG, Viejo CB, Vilán JAV. Support vector machines used to estimate the battery state of charge. IEEE Transactions on Power Electronics. 2013;28(12):5919-5926.
    43. Kang L, Zhao X, Ma J. A new neural network model for the state-of-charge estimation in the battery degradation process. Applied Energy. 2014;121:20-27.
    44. He W, Williard N, Chen C, Pecht M. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. International Journal of Electrical Power & Energy Systems. 2014;62:783-791.
    45. Sahinoglu GO, Pajovic M, Sahinoglu Z, Wang Y, Orlik PV, Wada T. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Transactions on Industrial Electronics. 2017;65(5):4311-4321.
    46. Chaoui H, Ibe-Ekeocha CC. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Transactions on Vehicular Technology. 2017;66(10):8773-8783.
    47. Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11:341-359. https://doi.org/10.1023/A:1008202821328.
    48. Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress. 2007:789-798
    49. Chen Z, Song X, Xiao R, Shen J, Xia X. State of health estimation for lithium-ion battery based on long short term memory networks. DEStech Transactions on Environment, Energy and Earth Sciences. 2018;27885.
    50. Ren L, Zhao L, Hong S, Zhao S, Wang H, Zhang L. Remaining useful life prediction for lithium-ion battery: A deep learning approach. IEEE Access. 2018;6:50587-50598.
    51. Wang C, Lu N, Wang S, Cheng Y, Jiang B. Dynamic long short-term memory neural-network-based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Applied Sciences. 2018;8(11):2078.
    52. Tan Y, Zhao G. A novel state-of-health prediction method for lithium-ion batteries based on transfer learning with long short-term memory network. IEEE Transactions on Industrial Electronics.2020. https://doi.org/10.1109/TIE.2019.2946551.
    53. Li L, Peng Y, Song Y, Liu D. Lithium-ion battery remaining useful life prognostics using data-driven deep learning algorithm. In: 2018 Prognostics and System Health Management Conference (PHM-Chongqing). 2018;1094-1100.
    54. Dopke J, Fritsche U, Pierdzioch C. Predicting recessions with boosted regression trees. International Journal of Forecasting. 2017;33(4):745-759.
    55. Qi C, Tang X. Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Computers & Industrial Engineering. 2018;118:112-122.
    56. Friedman JH. Stochastic gradient boosting. Computational Statistics and Data Analysis. 2002;38(4):367-378.
    57. Ridgeway G. Generalized boosted models: A guide to the GBM package. Update. 2007;1(1):2007.
    58. Rokach L. Ensemble-based classifiers, Artificial Intelligence Review.2010;33:1-39.
    59. Li Z, Wu D, Hu C, Terpenny J. An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction, Reliability Engineering & System Safety. 2017;184:110-122.
    60. Yang D, Zhang X, Pan R, Wang Y, Chen Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. Journal of Power Sources. 2018;384:387–395.
    61. Yang D, Wang Y, Pan R, Chen R, Chen Z. State-of-health estimation for the lithium-ion battery based on support vector regression. Applied Energy. 2018;227:273–283.
    62. Qin T, Zeng S, Guo J. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model. Microelectronics Reliability. 2015;55:1280–1284.
    63. Liu D, Xie W, Liao H, Peng Y. An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Transactions on Instrumentation and Measurement. 2015;64:660–670.
    64. Haykin S. Neural networks - a comprehensive foundation, volume 2, Cambridge University Press, USA, 1999.
    65. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research. 2014;15:1929–1958.
    66. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation. 1997;9:1735-1780.
    67. Raffel C, Ellis DP. Feed-forward networks with attention can solve some long-term memory problems. 2015;arXiv:1512.08756.
    68. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks. 1994;5(2):157-166.
    69. Rahimi-Eichi H, Ojha U, Baronti F, Chow MY. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Industrial Electronics Magazine. 2013;7(2):4-16.
    70. Li Y, Zhu Z, Kong D, Han H, Zhao Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems. 2019;181:104785.
    71. Gao Y, Fang C, Ruan Y. A novel model for the prediction of long-term building energy demand: LSTM with attention layer. IOP Conference Series: Earth and Environmental Science. 2019;294(1):012033.
    72. Liu Y, Liu Z, Lyu C, Ye J. Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction. IEEE Transactions on Intelligent Transportation Systems. 2019. http://dx.doi.org/10.1109/TITS.2019.2947145.
    73. Qin Y, Song D, Chen H, Cheng W, Jiang G, Cottrell G. A dual-stage attention-based recurrent neural network for time series prediction. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. 2017:2627–2633.
    74. Liang Y, Ke S, Zhang J, Yi X, Zheng Y. GeoMAN: Multi-level attention networks for geo-sensory time series prediction. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. 2018:3428–3434.
    75. Liu G, Guo J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing. 2019;337:325-338.
    76. Ran X, Shan Z, Fang Y, Lin C. An LSTM-based method with attention mechanism for travel time prediction. Sensors. 2019;19(4):861.
    77. Yu Y, Kim YJ. Two-dimensional attention-based LSTM model for stock index prediction. Journal of Information Processing Systems. 2019;15(5):1231-1242.
    78. Zhang X, Liang X, Zhiyuli A, Zhang S, Xu R, Wu B. AT-LSTM: An attention-based LSTM model for financial time series prediction. IOP Conference Series: Materials Science and Engineering. 2019;569(5):052037.
    79. Song X, Yang F, Wang D, Tsui KL. Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries. IEEE Access. 2019;7:88894-88902. https://doi.org/10.1109/ACCESS.2019.2926517.
    80. Elsheikh A, Yacout S, Ouali MS. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing. 2019;323:148-156. https://doi.org/10.1016/j.neucom.2018.09.076.
    81. Qin T, Zeng S, Guo J, Skaf Z. State of health estimation of Li-ion batteries with regeneration phenomena: a similar rest time-based prognostic framework, Symmetry. 2016;9:sym901004.
    82. Zhou Y, Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectronics Reliability. 2016;65:265-273.
    83. Sbarufatti C, Corbetta M, Giglio M, Cadini F. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. Journal of Power Sources. 2017;344:128-140.
    84. Saha B, Goebel K. Battery data set, National Aeronautics and Space Administration (NASA) Ames prognostics data repository, Moffett Field, CA, USA, 2007.
    85. Zhou D, Xue L, Song Y, Chen J. On-line remaining useful life prediction of lithium-ion batteries based on the optimized gray model GM (1, 1). Batteries. 2017;3:21-37.
    86. Liu D, Pang J, Zhou J, Peng Y, Pecht M. Prognostic for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability. 2013;53:832-839.
    87. Qin T, Zeng S, Guo J, Skaf Z. A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena. Energies. 2016;9:en910896.
    88. Liu D, Xie W, Laio H, Peng Y. An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Transactions on Instrumentation and Measurement. 2015;64:660-670.
    89. Matsuda Y, Kuwata N, Kawamura J. Thin-film lithium batteries with 0.3–30 μm thick LiCoO2 films fabricated by high-rate pulsed laser deposition. Solid State Ionics. 2018;320:38-44.
    90. Trask J, Anapolsky A, Cardozo B, Januar E, Kumar K, Miller M, Brown R, Bhardwaj R. Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. Journal of Power Sources. 2017;350:56-64.
    91. Matsuda Y, Kuwata N, Okawa T, Dorai A, Kamishima O, Kawamura J. In situ Raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery. Solid State Ionics. 2019;335:7-14.
    92. Joo H, Lee H, Cho G, Nam T, Huh S, Choi B, Jueong H, Noh J. Influence of the metal-induced crystallization on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Films. 2017;641:53-58.
    93. Zhu X, Guo Z, Du G, Zhang P, Liu H. LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries. Surface and Coatings Technology. 2010;204(11):1710-1714.
    94. Miao Q, Xie L, Cui H, Liang W, Pecht M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectronics Reliability. 2013;53(6):805-810.
    95. De Brabanter K, De Brabanter J, Suykens JA, De Moor B. Approximate confidence and prediction intervals for least squares support vector regression. IEEE Transactions on Neural Network. 2010;22(1):10-120.
    96. Wager S, Hastie T, Efron B. Confidence intervals for random forests: The jackknife and the infinitesimal jackknife. Journal of Machine Learning Research. 2014;15(1):1625-1651.
    97. Birkl CR. Oxford battery degradation dataset 1. University of Oxford, Oxford, UK, 2017.
    98. Severson KA, Attia PM, Jin N, Perkins N, Jiang NB, Yang Z, Chen MH, Aykol M, Herring PK, Fraggedakis D, Bazant MZ, Harris SJ, Chueh WC, Braatz RD. Data-driven prediction of battery cycle life before capacity degradation, Nature Energy. 2019;4(5):383-391.
    99. Peng Y, Hou Y, Song Y, Pang J, Liu D. Lithium-ion battery prognostics with hybrid Gaussian process function regression, Energies. 2018;11:1420.
    100. He W, Williard N, Chen C, Pecht M. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. International Journal of Electrical Power & Energy Systems. 2014;62:783-791.
    101. Zhang C, Zhu Y, Dong G, Wei J. Data‐driven lithium‐ion battery states estimation using neural networks and particle filtering. International Journal of Energy Research. 2019;43(14):8230-8241.
    102. Xing Y, He W, Pecht M, Tsui KL. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Applied Energy. 2014;113:106-115.
    103. Zheng F, Xing Y, Jiang J, Sun B, Kim J, Pecht M. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Applied Energy. 2016;183:513-525.
    104. Duong VH, Bastawrous HA, See KW. Accurate approach to the temperature effect on state of charge estimation in the LiFePO4 battery under dynamic load operation. Applied Energy. 2017;204:560-571.
    105. Abdel-Monem M, Trad K, Omar N, Hegazy O, Van den Bossche P, Van Mierlo J. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy. 2017;120:179-191.
    106. Wang Y, Zhang C, Chen Z. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter. Journal of Power Sources. 2015;279:306-311.
    107. Ouyang M, Feng X, Han X, Lu L, Li Z, He X. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Applied Energy. 2016; 165:48-59.
    108. Liu D, Li L, Song Y, Wu L, Peng Y. (2019). Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions. International Journal of Electrical Power & Energy Systems. 2019;110:48-61.
    109. Yang F, Xing Y, Wang D, Tsui KL. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile. Applied Energy. 2016;164:387-399.
    110. Kollmeyer P. Panasonic 18650PF Li-ion Battery Data, Mendeley Data, v1; 2018. http://dx.doi.org/10.17632/wykht8y7tg.1
    111. Bian C, He H, Yang S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. Energy. 2019:116538.

    無法下載圖示 全文公開日期 2022/06/18 (校內網路)
    全文公開日期 2025/06/18 (校外網路)
    全文公開日期 2021/06/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE