簡易檢索 / 詳目顯示

研究生: 姜欣妮
Hsin-Ni Chiang
論文名稱: 密度泛函理論於在α-Al2O3(0001), 3Ni/α-Al2O3(0001)及 3Cu/α-Al2O3(0001)表面上乙醇裂解及水氣轉移反應之研究
DFT Study of EtOH Decomposition and WGS Reactions: Over α-Al2O3(0001), 3Ni/α-Al2O3(0001) and 3Cu/α-Al2O3(0001) Surfaces
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡大翔
Dah-Shyang Tsai
林志興
Jyh-Shing Lin
王伯昌
Bo-Cheng Wang
趙奕姼
Ito Chao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 138
中文關鍵詞: 乙醇裂解反應水氣轉移反應產氫
外文關鍵詞: WGS, Water Dimer
相關次數: 點閱:447下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用密度泛函理論的計算來探討乙醇在α-Al2O3(0001) 和3Ni/α-Al2O3(0001) 表面吸附和裂解反應,以及在3Cu/α-Al2O3(0001) 表面的水氣轉移反應,包含產物結構、吸附能以及反應位能圖等的計算。我們亦透過態密度以及電子密度差異的分析,來探討吸附物質與表面的作用力。計算結果顯示,乙醇在α-Al2O3(0001) 表面的裂解反應,主要產物為乙烯 (CH3CH2OH(a) → C2H4(g) + OH(a) + H(a)),反應能障為1.46 eV,此說明了實驗的觀察:在α-Al2O3(0001) 表面,雖然有很高的乙醇轉化率,但其產氫量低。反之,乙醇在3Ni/α-Al2O3(0001) 表面上的裂解反應,可藉由鎳吸附在α–Al2O3 (0001) 表面,增加催化表面的反應性,也降低表面積碳現象的產生。在形成CH2CHO反應中間體時,可以藉由吸附位置的轉換,來增加碳原子的配位數,同時減弱C–C鍵的鍵能,使其容易斷裂 (CH2CH2O(a) → CH2CHO (a) + H(a)),此步驟為整體反應當中的速率決定步驟,反應能障為1.20 eV。另一方面,我們同樣藉由銅吸附在α–Al2O3 (0001)表面,研究在3Cu/α-Al2O3(0001) 表面上水氣轉移反應。計算結果指出,OH扮演相當重要的催化角色,可經由water dimer的裂解取代直接單一的水裂解,不但大幅降低水氣轉移反應中,水裂解反應第一步所需克服的能障,進而提高OH的覆蓋率。OH的存在不但可增加CO的轉化率,同時可提高H2產率。其中產氫能障只需0.65 eV。


Ethanol adsorption and decomposition on the clean α-Al2O3(0001) and the 3Ni/α-Al2O3(0001) surfaces, and water gas shift reaction on 3Cu/α-Al2O3(0001) surface have been systematically investigated by the density functional theory calculations. The nature of the surface–adsorbates bonding was studied through the analyses of density of states (DOS) and the electron density difference (EDD) contour plots. Although the experimental observation showed that the α-Al2O3(0001) surface has high ethanol conversion, but the calculated results indicate that ethanol dehydration to ethylene (CH3CH2OH(a) → C2H4(g) + OH(a) + H(a)), is the main reaction pathway with the energy barrier of 1.46 eV. Whereas the ethanol decomposition over the 3Ni/α-Al2O3(0001) surface shows that the 3Ni/α-Al2O3(0001) surface possesses high activity to inhibit coke formation and the CH2CH2O(a) → CH2CHO(a) + H(a) reaction is the rate-determining step for the overall reaction [CH3CH2OH(a) → CH2(a) + CO(a) + 4H(a) ] with an energy barrier of 1.20 eV. The water gas shift reaction mechanisms (redox, carboxyl and formate) on the 3Cu/α-Al2O3(0001) surface, have been examined. The calculated results show that the redox and carboxyl mechanisms are controlled by OH diffusion and carboxyl formation, respectively. These studies suggest that the OH is a reactive intermediate and plays an autocatalytic role in the catalytic WGS reaction. Specially, the OH formation barrier can be reduced to 0.22 eV from the water dimer dissociation, and the H2 formation barrier is extremely low, 0.65 eV, on 3Cu/α-Al2O3(0001) surface.

CONTENTS 1. Introduction………………………………………………………….1 1.1 Alternate Energy Source……………………………………………………...1 1.2 Introduction the Hydrogen Production Technology by Catalytic Steam Reforming of Ethanol……………………………………………………..…..2 1.3 Introduction to Catalysts……………………………………………………..7 1.4 About This Work…………………………………………………………….14 2. Computational Details……………………………………………..16 2.1 Theoretical Background……………………………………………………..16 2.2 Methods and Parameters in This Work……………………………...………22 2.3 Surface Models………………………………………………………………24 3. Ethanol adsorption and decomposition over α-Al2O3(0001) surface……………………………………………………………….27 3.1 Bulk and clean α-Al2O3(0001) surface………………………………………27 3.2 Adsorption of EtOH on α-Al2O3(0001) surface……………………………..31 3.3 EtOH decomposition on α-Al2O3(0001) surface…………………………….36 3.4 Conclusions………………………………………………………………….45 4. Density functional theory study of ethanol decomposition on 3Ni/α-Al2O3(0001) surface…………………………………………46 4.1 EtOH Adsorption on 3Ni/α-Al2O3(0001) surface………………………...…46 4.2 EtOH dehydrogenation on 3Ni/α-Al2O3(0001) surface……………………..50 4.3 Scission of C–C Bond……………………………………………………….63 4.4 Conclusions………………………………………………………………….67 5. Density Functional Theory Study of Water–Gas–Shift Reaction on 3Cu/α–Al2O3(0001) Surface………………………….………….…69 5.1 Adsorption on 3Cu/α-Al2O3(0001) surface……………………………….…69 5.2 The water dissociation…………………………………………………….…73 5.3 The redox mechanism………………………………………………...……..78 5.4 The carboxyl mechanism………………………………………………….…79 5.5 The formate formation…………………………………………………...…..81 5.6 The H2 formation………………………………………………………….…81 5.7 The CO, O and OH diffusion…………………………………………….….83 5.8 The zero point energy correction………………………………………….…84 5.9 Conclusions………………………………………………………………….87 6. Summary……………………………………………………………88 References………………………………………………………………91 Appendices……………………………………………………………..98

References

(1) Das, D.; Veziroglu, T. N. Int. J. Hydrogen Energy 2001, 26, 13.
(2) Song, C. Catal. Today 2006, 115, 2.
(3) Henrici-Olive., G.; Olive, S. Angew. Chem., Int. Ed. 1976, 15, 136.
(4) Fields, S. Environ. Health Perspect. 2003, 111, A38.
(5) Marino, F.; Boveri, M.; Baronetti, G.; Laborde, M. Int. J. Hydrogen Energy 2004, 29, 67.
(6) Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E. Science 2004, 303, 993.
(7) Fernando, S.; Hanna, M. Energy Fuels 2004, 18, 1695.
(8) Armor, J. N. Appl. Catal. A 1999, 176, 159.
(9) Spilsbury, C.; Hydrogen: Production Supply and Distribution. Presented at the Hydrogen Production Workshop; University of Glamorgan; Pontypridd, W., U.K., February 14, 2001.
(10) Chen, Z.; Yan, Y.; Elnashaie, S. S. E. H. Chem. Eng. Sci. 2004, 59, 1965.
(11) A National Vision of America's Transition to A Hydrogen Economy-To 2030 and Beyond; U.S. Department of Energy (DOE): Washington, D. 2002.
(12) Velu, S.; Satoh, N.; Gopinath, C. S.; Suzuki, K. Catal. Lett. 2002, 81, 145.
(13) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Energy & Fuels 2005, 19, 2098.
(14) Frusteri, F.; Freni, S.; Chiodo, V.; Spadaro, L.; Blasi, O. D.; Bonura, G. Appl. Catal. A 2004, 270, 30.
(15) Srinivas, D.; Satyanarayana, C. V. V.; Potdar, H. S.; Ratnasamy, P. Appl. Catal. A 2003, 246, 323.
(16) Cavallaro, S.; Mondello, N.; Freni, S. J. Power Sources 2001, 102, 198.
(17) Levin, I.; Brandon, D. J. Am. Ceram. Soc. 1998, 81, 1995.
(18) Kazama, A.; Sekine, Y.; Oyama, K.; Matsukata, M.; Kikuchi, E. Applied Catal. A 2010, 383, 96.
(19) Germani, G.; Schuurman, Y. AIChE J. 2006, 52, 1806.
(20) Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. Appl. Catal. A 2003, 238, 11.
(21) Ovesen, C. V.; Clausen, B. S.; Hammershøi, B. S.; Steffensen, G.; Askgaard, T.; Chorkendorff, I.; Nørskov, J. K.; Rasmussen, P. B.; Stoltze, P.; Taylor, P. J. CATAL. 1996, 158, 170.
(22) Wefers, K.; Misra, C. Alcoa Technical Paper No. 19, Alcoa Laboratories, Pittsburgh, PA, 1987.
(23) Henrich, V. E.; Cox, P. A. Cambridge University Press, Cambridge, 1994.
(24) Brown, G. E. J.; Henrich, V. E.; Casey, W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.; Goodman, D. W.; Gratzel, M.; Maciel, G.; McCarthy, M. I.; Nealson, K. H.; Sverjensky, D. A.; Toney, M. F.; Zachara, J. M. Chem. Rev. 1999, 99, 77.
(25) Gautier, M.; Fenaud, G.; Van, L. P.; Villette, B.; Pollak, M.; Thromat, N.; Jollet, F.; Durand, J.-P. J. Am. Ceram. Soc. 1994, 77, 323.
(26) Manassidis, I.; Gillan, M. J. J. Am. Ceram. Soc. 1994, 77, 335.
(27) Soares, E. A.; Van Hove, M. A.; Walters, C. F.; McCarty, K. F. Phys. Rev. B 2002, 65, 195405.
(28) Liu, P.; Kendelewicz, T.; Brown, G. E. J.; Nelson, E. J.; Chambers, S. A. Surf. Sci. 1998, 417, 53.
(29) Eng, P. J.; Trainor, T. P.; Brown, G. E. J.; Waychunas, G. A.; Newville, M.; Sutton, S. R.; Rivers, M. L. Science 2000, 288, 1029.
(30) Toofan, J.; Watson, P. R. Surf. Sci. 1998, 401, 162.
(31) Barth, C.; Reichling, M. Nature 2001, 414, 54.
(32) Gan, Y.; Wanless, E. J.; Franks, G. V. Surf. Sci. 2007, 601, 1064.
(33) Steinberg, S.; Ducker, W.; Vigil, G.; Hyukjin, C.; Frank, C.; Tseng, M. Z.; D. R. Clarke; Israelachvili, J. N. Science 1993, 260, 656.
(34) Gan, Y.; Franks, G. V. J. Phys. Chem. B 2005, 109, 12474.
(35) Franks, G. V.; Gan, Y. J. Am. Ceram. Soc. 2007, 90, 3373.
(36) Llorca, J.; de la Piscina, P. R.; Sales, J.; Homs, N. Chem. Commun. 2001, 641.
(37) Fatsikostas, A. N.; Verykios, X. E. J. Catal. 2004, 225, 439.
(38) Llorca, J.; de la Piscina, P. R.; Sales, J.; Homs, N. Chem. Commun. 2001, 641.
(39) Breen, J. P.; Burch, R.; Coleman, H. M. Appl. Catal. B 2002, 39, 65.
(40) Haga, F.; Nakajima, T.; Miya, H.; Mishima, S. Catal. Lett. 1997, 48, 223.
(41) Therdthianwong, A.; Sakulkoakiet, T.; Therdthianwong, S. ScienceAsia 2001, 27, 193.
(42) Comas, J.; Marino, F.; Laborde, M.; Amadeo, N. Chem. Eng. J. 2004, 98, 61.
(43) Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. J. J. Catal. 2006, 244, 137.
(44) Saito, M.; Murata, K. Catal. Surv. Asia 2004, 8, 285.
(45) Yeragi, D. C.; Pradhan, N. C.; Dalai, A. K. Catal. Lett. 2006, 112, 139.
(46) Wu, J.; Saito, M. J. Catal. 2000, 195, 420.
(47) Fatsikostas, A. N.; Kondarides, D. I.; Verykios, X. E. Chem. Commun. 2001, 851.
(48) Marino, F.; Boveri, M.; Baronetti, G.; Laborde, M. Int. J. Hydrogen Energy 2001, 26, 665.
(49) Ballinger, T. H.; Yates, J. T., Jr. Langmuir 1991, 7, 3041.
(50) Akande, A. J.; Idem, R. O.; Dalai, A. K. Appl. Catal. A 2005, 287, 159.
(51) Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Angew. Chem., Int. Ed. 2007, 46, 1329.
(52) Sakurai, H.; Ueda, A.; Kobayashi, T.; Haruta, M. Chem. Commun. 1997, 271.
(53) Li, Y.; Fu, Q.; Flytzani-Stephanopoulos, M. Appl. Catal. B 2000, 27, 179.
(54) Saito, M.; Tomoda, K.; Takahara, I.; Murata, K.; Inaba, M. Catal. Lett. 2003, 89, 11.
(55) Levine, I. N.; Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey 1991, Ch. 15.
(56) Haynes, P. D.; Ph.D. thesis; University of Cambridge; Cambridge, U.
(57) Gibson, M. C.; Ph.D. thesis; University of Durham; Durham, U.
(58) Chalamala, B. R.; Reuss, R. H.; Dean, K. A.; Sosa, E. D.; Golden, D. E. J. Appl. Phys. 2002, 91, 6141.
(59) Chalamala, B. R.; Wei, Y.; Reuss, R. H.; Aggarwal, S.; Gnade, B. E.; Ramesh, R.; Bernhard, J. M.; Sosa, E. D.; Golden, D. E. Appl. Phys. Lett. 1999, 74, 1394.
(60) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
(61) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115.
(62) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
(63) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.
(64) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
(65) Perdew, J. P. Electronic Structure of Solids ’91 1991, p 11.
(66) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
(67) Nayak, S. K.; Khanna, S. N.; Rao, B. K.; Jena, P. Phys. Chem. A 1997, 101, 1072.
(68) Petkov, P. S.; Vayssilov, G. N.; Kruger, S.; Rösch, N. J. Phys. Chem. A 2007, 111, 2067.
(69) Baxter, R.; Reinhardt, P.; Lopez, N.; Illas, F. Surf. Sci. 2000, 445, 448.
(70) Wander, A.; Searle, B.; Harrison, N. M. Surf. Sci. 2000, 458 25.
(71) Batyrev, I.; Alavi, A.; Finnis, M. W. Faraday Discuss. 1999, 114, 33.
(72) Boettger, J. C. Phys. Rev. B 1997, 55, 750.
(73) Verdozzi, C.; Jennison, D. R.; Schultz, P. A.; Sears, M. P. Phys. Rev. Lett. 1999, 82, 799.
(74) Di Felice, R.; Northrup, J. Phys. Rev. B 1999, 60, R16287.
(75) Wang, X. G.; Chaka, A.; Scheffler, M. Phys. Rev. Lett. 2000, 84, 3650.
(76) Borck, Ø.; Schroder, E. J. Phys. Condens. Matter 2006, 18, 1.
(77) Guenard, P.; Renaud, G.; Barbier, A.; Gautier-Soyer, M. Surf. Rev. Lett. 1998, 5, 321.
(78) Ruberto, C.; Yourdshahyan, Y.; Lundqvist, B. I. Phys. Rev. B 2003, 67, 195412.
(79) Manassidis, I.; De Vita, A.; Gillan, M. J. Surf. Sci. Lett. 1993, 285, L517.
(80) Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. Science 1998, 282, 265.
(81) Ahn, J.; Rabalais, J. W. Surf. Sci. 1997, 388, 121.
(82) Idriss, H. Platinum Metals Rev. 2004, 48, 105.
(83) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104.
(84) Dömök, M.; Tóth, M.; Raskó, J.; Erdőhelyi, A. Appl. Catal. B 2007, 69, 262.
(85) Chiang, H.-N.; Wang, C.-C.; Cheng, Y.-C.; Jiang, J. C.; Hsieh, H.-M. Langmuir 2010, 26, 15845.
(86) Liguras, D. K.; Kondarides, D. I.; Verykios, X. E. Appl. Catal., B 2003, 43, 345.
(87) Cavallaro, S. Energy & Fuels 2000, 14, 1195.
(88) Liberatori, J. W. C.; Ribeiro, R. U.; Zanchet, D.; Noronha, F. B.; Bueno, J. M. C. Appl. Catal. A 2007, 327, 197.
(89) Freni, S. J. Power Sour. 2001, 94, 14.
(90) Sun, J.; Qiu, X. P.; Wu, F.; Zhu, W. T. Int. J. Hydrogen Energy 2005, 30, 437.
(91) Therdthianwong, S.; Siangchin, C.; Therdthianwong, A. Fuel Process. Technol. 2008, 89, 160.
(92) Bhatia, B.; Sholl, D. S. J. Chem. Phys. 2005, 122, 204707.
(93) Chen, H.-L.; Liu, S.-H.; Ho, J.-J. J. Phys. Chem. B 2006, 110, 14816.
(94) Henderson, M. A. Surf. Sci. Rep. 2002, 46, 1.
(95) Liu, P.; Rodríguez, J. A. J. Chem. Phys. 2007, 126, 164705.
(96) Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem. Soc. 2008, 130, 1402.
(97) Tang, Q.-L.; Chen, Z.-X.; He, X. Surf. Sci. 2009, 603, 2138.
(98) Lide, D. R. Handbook of Chemistry and Physics 2000.
(99) Bergeld, J.; Kasemo, B.; Chakarov, D. V. Surf. Sci. 2001, 495, L815.
(100) Luengnaruemitchai, A.; Osuwan, S.; Gulari, E. Catal. Commun. 2003, 4, 215.
(101) Fujitani, T.; Choi, Y.; Sano, M.; Kushida, Y.; Nakamura, J. J. Phys. Chem. B 2000, 104, 1235.
(102) Crapper, M. D.; Riley, C. E.; Woodruff, D. P.; Puschmann, A.; Haase, J. Surf. Sci. 1986, 171, 1.
(103) Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A. J. Phys. Chem. C 2008, 112, 4608.
(104) Huang, S.-C.; Lin, C.-H.; Wang, J.-H. J. Phys. Chem. C 2010, 114, 9826.
(105) Fishtik, I.; Datta, R. 2002, 512, 229.
(106) Liu, X.-M.; Lu, G.-Q.; Yan, Z.-F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518.

QR CODE