簡易檢索 / 詳目顯示

研究生: 胡耀明
Yao-Ming Hu
論文名稱: 以電噴霧技術平台備製含抗發炎藥物硫辛酸或茶樹精油之次微米級幾丁聚醣藥物載體粒子:物化性分析及其體外抗發炎試驗評估
Preparation of ALA or TTO Encapsulated Chitosan Submicron Particles Using Electrospray System-Characterizations and Their Antiinflammatory Evaluations
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 周志中
Chou Tz-Chong
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 電噴霧技術硫辛酸茶樹精油甲殼素次微米藥物載體粒子
外文關鍵詞: Electrospary, Alapha lipoic acid, Ter tree oil, Submicron drug carrier
相關次數: 點閱:267下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

發炎反應,是人體內重要的免疫、警示。正常的發炎反應,是避免外來入侵物堆積、傷害身體的重要防線。但是,過度或不正常的發炎反應,往往造成體內組織無法回復的傷害,其抑制與調控,便顯得非常重要。硫辛酸(Alpha lipoic acid, ALA),即是當今十分重要的親水性抗發炎藥物,也是體內細胞代謝作用中非常重要的補體。只是,親水性藥物在體內往往容易被組織液大量稀釋,造成投藥區域藥物濃度損失,往往需要投入比預期更大量的藥物,才能達到藥效。因此,本研究希望透過藥物載體粒子的包覆,達到ALA於投藥環境中穩定釋出的效果。澳洲茶樹精油(Tea tree oil, TTO),為一複方油性藥物,內含數種可能據有抗發炎效果的物質,但由於極差的親水性,導致很難用於藥物試驗。因此,本研究希望透過藥物載體粒子的包覆,使TTO可以均勻地分散於PBS中,進而能直接用於藥物試驗。幾丁聚醣(Chitosan, CS),為現今相當熱門的天然高分子藥物包覆材料,其黏膜組織沾黏性及生物相容性廣為人知,非常適合用於本研究中的藥物包覆材料。電噴霧技術(Electrospray, ES)為一創新次微米藥物載體粒子備製技術,近年來廣泛應用於藥物載體粒子領域研究中。ES技術使用的設備簡單,且只需單一步驟即可完成粒子備製,並且可於常溫常壓下進行,非常便利、實用。本研究中利用ES技術成功備製出ALA-PEO-CS、TTO-PVP-CS兩種次微米級抗發炎藥物載體粒子,並進行結構特性鑑定。ALA-PEO-CS的平均粒徑為707.5 ± 66.6 nm,而TTO-PVP-CS為659.8 ± 229.0 nm,兩者在表面形態與上皆為飽和球型。體外抗發炎試驗部分,在CS次微米藥物載體粒子包覆下ALA-PEO-CS相較於單純未包覆的ALA,有較好的抗發炎效果,提升了ALA藥物近100 %的使用效率。另外,經次微米藥物載體粒子包覆後,TTO-PVP-CS成功均勻地分散於PBS中,並於體外抗發炎試驗中達到良好的效果。我們相信,ALA-PEO-CS和TTO-PVP-CS非常有淺力成為創新抗發炎藥物的優良選擇。


This study demonstrates the feasibility of using a single- capillary electrospray (ES) system to generate novel alpha-lipoic acid (ALA) encapsulated poly(ethylene oxide)-chitosan, and tea tree oil (TTO) encapsulated poly(vinylpyrrolidon)-chitosan (ALA-PEO-CS and TTO-PVP-CS) particles with monodispersed diameters. Scanning electron microscopic images (SEM) and dynamic light scattering (DLS) results indicate that the ES system can generate either a dry powder or a homogeneous water-based suspension of ALA-PEO-CS and TTO-PVP-CS particles. The SEM images revealed that both ALA-PEO-CS and TTO-PEO-CS particles have spherical shape with diameters of approximately 707 ± 66.68 nm, and 659.8 ± 229.0 nm. In addition, zeta potential studies were performed using a zetasizer instrument and showed positively electric surface potential of 57.7 ± 0.5 mV of ALA-PEO-CS , and almost neutral -4.1±0.01 mV of TTO-PVP-CS. Based on the zeta potential studies, we concluded that the excellent dispersity and stability of ALA-PEO-CS and TTO-PVP-CS suspension is attributed to the reduction in particle size and electrostatic repulsion between these submicron particles. Besides, TTO no longer suffered from its poor solubility in drug evaluation, because of the result above. Finally, we used lipopolysaccharide (LPS)-induced nitrite formation in Raw 264.7 macrophages as a model for in vitro anti-inflammation evaluation. We find that the anti-inflammatory ability of the ALA-PEO-CS particles is superior to that of free ALA solution in macrophage cells, which is attributed to the more efficiently intracellular delivery. The confocal image results proved that the uptake of ALA-PEO-CS particles by the LPS-treated Raw 264.7 macrophages is possibly initiated by the interaction with cell-surface molecules through electrostatic interactions, followed by endocytosis of the attached particles. TTO, also showed good anti-inflammatory effect in LPS test, which is attributed to all the effective components were carried in the carriers. We believe that ALA-PEO-CS and TTO-PVP-CS have great potential as novel formulation for anti-inflammatory treatment.

目錄 第一章 緒論1 1-1 研究動機2 1-2 研究目的3 1-3 實驗設計3 第二章 文獻回顧6 2-1 發炎反應7 2-1-1 急性發炎反應7 2-1-2 慢性發炎反應8 2-2 硫辛酸10 2-3澳洲茶樹精油12 2-4 幾丁聚醣14 2-5 電噴霧技術18 第三章 實驗材料與方法19 3-1實驗材料20 3-1-1次微米粒子備製20 3-1-2次微米粒子特性鑑定20 3-1-3 細胞實驗20 3-2 實驗方法21 3-1-1 ALA-PEO-CS次微米粒子備製方法與鑑定21 3-1-1-1利用電噴霧技術備製ALA-PEO-CS次微米粒子21 3-1-1-2粒徑大小與統計23 3-1-1-3 FT-IR結構鑑定23 3-1-1-4 藥物定量與釋放曲線24 3-1-1-5表面電位25 3-1-1-6 降解速率試驗25 3-1-1-7 雷射共軛聚焦顯微影像26 3-2-2 TTO-PVP-CS次微米粒子備製方法與鑑定27 3-2-2-1 以電噴霧技術備製TTO-PVP-CS次微米粒子27 3-2-2-2粒徑大小與統計28 3-2-2-3 FT-IR結構鑑定28 3-2-2-4 藥物定量與釋放曲線28 3-2-2-5表面電位29 3-2-2-6 雷射共軛聚焦顯微影像29 3-1-3 細胞實驗30 3-1-3-1 細胞繼代30 3-1-3-2 細胞活性測試30 3-1-3-3 細胞抗發炎測試31 第四章 結果與討論33 4-1 以電噴霧技術備製ALA-PEO-CS、TTO-PVP-CS34 4-2 FT-IR結構鑑定36 4-3 藥物定量與釋放曲線37 4-4 表面電位37 4-5 降解速率試驗39 4-6 細胞活性測試40 4-7 細胞抗發炎反應測試41 4-8 以雷射共軛聚焦顯微鏡探討細胞吞噬性42 第五章 結論44 第六章 參考文獻47 表目錄 表一、經ES備製包覆不同ALA濃度的CS次微米粒子粒徑分佈統計。58 表二、CS次微米粒子粒徑與表面電性分析結果。59 圖目錄 圖一、實驗設計流程圖5 圖二、 正常的體內急性發炎反應[2]8 圖三、 慢性發炎機制[2]9 圖四、硫辛酸化學結構11 圖五、 澳洲茶樹精油成分表[45]13 圖六、 幾丁聚醣的化學結構15 圖七、(a) 電噴霧裝置圖[77]與 (b) 實驗CCD影像22 圖八、ALA藥物 (a) UV-vis吸收圖譜與(b) 檢量線。60 圖九、茶樹精油(a) NHPLC圖與(b) 檢量線A。61 圖十、茶樹精油HPLC圖與檢量線B。62 圖十一、經ES備製含有不同比例醋酸水溶液的ALA-PEO-CS (a) 2 wt%, (b) 3 wt%, (c) 5 wt%。63 圖十二、經ES製備以不同工作距離的ALA-PEO-CS (a) 15 cm, (b) 5 cm。64 圖十三 經ES備製包覆不同ALA濃度的ALA-PEO-CS載體粒子(a) 0.1M, (b) 0.25M, (c) 0.5M。65 圖十四、ALA-PEO-CS經實驗條件最佳化後的(a) SEM影像及 (b) 粒徑分佈66 圖十五、TTO-PVP-CS經實驗條件最佳化後的(a) SEM影像及 (b) 粒徑分佈67 圖十六、ALA-PEO-CS之FT-IR光譜圖68 圖十七、ALA-PEO-CS之FT-IR光譜圖69 圖十八、 (a) ALA-PEO-CS (b) TTO-PVP-CS 藥物釋放曲線70 圖十九、 ALA-PEO-CS降解速率試驗71 圖二十、 ALA-PEO-CS細胞活性測試72 圖二十一、 TTO-PVP-CS細胞活性測試73 圖二十二、 ALA-PEO-CS細胞抗發炎測試74 圖二十三、 TTO-PVP-CS細胞抗發炎測試75 圖二十四、 ALA-PEO-CS經Raw 264.7巨噬細胞吞噬24小時後雷射共軛聚焦顯微影像76

[1]H. L. Lujan and S. E. DiCarlo, "Physical activity, by enhancing parasympathetic tone and activating the cholinergic anti-inflammatory pathway, is a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases," Med Hypotheses, vol. 80, pp. 548-552, May 2013.
[2]黃智生, "發炎反應-常見文明病的始作俑者," 科學發展, vol. 422, pp. 6-10, 2008.
[3]M. Scatena, L. Liaw, and C. M. Giachelli, "Osteopontin - A multifunctional molecule regulating chronic inflammation and vascular disease," Arteriosclerosis Thrombosis and Vascular Biology, vol. 27, pp. 2302-2309, Nov 2007.
[4]L. M. Coussens and Z. Werb, "Inflammation and cancer," Nature, vol. 420, pp. 860-867, Dec 2002.
[5]P. Dandona, A. Aljada, and A. Bandyopadhyay, "Inflammation: the link between insulin resistance, obesity and diabetes," Trends Immunol, vol. 25, pp. 4-7, Jan 2004.
[6]H. Akiyama, S. Barger, S. Barnum, B. Bradt, J. Bauer, G. M. Cole, N. R. Cooper, P. Eikelenboom, M. Emmerling, B. L. Fiebich, C. E. Finch, S. Frautschy, W. S. T. Griffin, H. Hampel, M. Hull, G. Landreth, L. F. Lue, R. Mrak, I. R. Mackenzie, P. L. McGeer, M. K. O'Banion, J. Pachter, G. Pasinetti, C. Plata-Salaman, J. Rogers, R. Rydel, Y. Shen, W. Streit, R. Strohmeyer, I. Tooyoma, F. L. Van Muiswinkel, R. Veerhuis, D. Walker, S. Webster, B. Wegrzyniak, G. Wenk, T. Wyss-Coray, and G. Neuroinflammation Working, "Inflammation and Alzheimer's disease," Neurobiol Aging, vol. 21, pp. 383-421, May-Jun 2000.
[7]中華民國行政院衛生署, "民國101年死因統計年報 " 2013.
[8]H. Moini, L. Packer, and N. E. L. Saris, "Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid," Toxicol Appl Pharmacol, vol. 182, pp. 84-90, Jul 2002.
[9]J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai, "Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method," Drug Development and Industrial Pharmacy, vol. 25, pp. 471-476, 1999.
[10]U. Weidenauer, D. Bodmer, and T. Kissel, "Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part I: Evaluation of different techniques for the encapsulation of pamidronate di-sodium salt," Journal of Microencapsulation, vol. 20, pp. 509-524, Jul-Aug 2003.
[11]C. F. Carson, K. A. Hammer, and T. V. Riley, "Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties," Clinical Microbiology Reviews, vol. 19, pp. 50-+, Jan 2006.
[12]K. Ninomiya, N. Maruyama, S. Inoue, H. Ishibashi, T. Takizawa, H. Oshima, and S. Abe, "The Essential Oil of Melaleuca alternifolia (Tea Tree Oil) and Its Main Component, Terpinen-4-ol Protect Mice from Experimental Oral Candidiasis," Biol Pharm Bull, vol. 35, pp. 861-865, Jun 2012.
[13]C. Brand, A. Ferrante, R. H. Prager, T. V. Riley, C. F. Carson, J. J. Finlay-Jones, and P. H. Hart, "The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro," Inflammation Research, vol. 50, pp. 213-219, 2001/04/01 2001.
[14]E. Yilmaz, "Chitosan: a versatile biomaterial," Adv Exp Med Biol, vol. 553, pp. 59-68, 2004.
[15]N. Bhattarai, J. Gunn, and M. Zhang, "Chitosan-based hydrogels for controlled, localized drug delivery," Adv Drug Deliv Rev, vol. 62, pp. 83-99, Jan 31 2010.
[16]Q. Yuan, J. Shah, S. Hein, and R. D. Misra, "Controlled and extended drug release behavior of chitosan-based nanoparticle carrier," Acta Biomater, vol. 6, pp. 1140-8, Mar 2010.
[17]X. Zhang, F. Chen, and J. Ni, "A novel method to prepare magnetite chitosan microspheres conjugated with methotrexate (MTX) for the controlled release of MTX as a magnetic targeting drug delivery system," Drug Deliv, vol. 16, pp. 280-8, Jul 2009.
[18]Z. Modrzejewska and W. Eckstein, "Chitosan hollow fiber membranes," Biopolymers, vol. 73, pp. 61-8, Jan 2004.
[19]A. Grenha, B. Seijo, C. Serra, and C. Remunan-Lopez, "Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization," Biomacromolecules, vol. 8, pp. 2072-9, Jul 2007.
[20]T. H. Dung, S. R. Lee, S. D. Han, S. J. Kim, Y. M. Ju, M. S. Kim, and H. Yoo, "Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment," J Nanosci Nanotechnol, vol. 7, pp. 3695-9, Nov 2007.
[21]P. J. Barnes and M. Larin, "Mechanisms of disease - Nuclear factor-kappa b - A pivotal transcription factor in chronic inflammatory diseases," New England Journal of Medicine, vol. 336, pp. 1066-1071, Apr 1997.
[22]H. J. Chaea, H. R. Kim, Y. J. Kang, K. C. Hyun, H. J. Kim, H. G. Seo, J. H. Lee, H. S. Yun-Choi, and K. C. Chang, "Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-5 1S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappa B translocation in ROS 17/2.8 cells activated with inflammatory stimulants," Int Immunopharmacol, vol. 7, pp. 1559-1568, Dec 2007.
[23]W. Tang, Y. Lu, Q. Y. Tian, Y. Zhang, F. J. Guo, G. Y. Liu, N. M. Syed, Y. J. Lai, E. A. Lin, L. Kong, J. Su, F. F. Yin, A. H. Ding, A. Zanin-Zhorov, M. L. Dustin, J. Tao, J. Craft, Z. N. Yin, J. Q. Feng, S. B. Abramson, X. P. Yu, and C. J. Liu, "The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice," Science, vol. 332, pp. 478-484, Apr 2011.
[24]G. Guarnieri, G. Grassi, R. Barazzoni, M. Zanetti, and G. Biolo, "The impact of inflammation on metabolic regulation in chronic kidney disease: A review," Journal of Renal Nutrition, vol. 15, pp. 121-124, Jan 2005.
[25]R. Tkacova, "Systemic Inflammation in Chronic Obstructive Pulmonary Disease: May Adipose Tissue Play a Role? Review of the Literature and Future Perspectives," Mediators Inflamm, 2010.
[26]R. W. Busby, J. P. M. Schelvis, D. S. Yu, G. T. Babcock, and M. A. Marletta, "Lipoic Acid Biosynthesis:  LipA Is an Iron−Sulfur Protein," J Am Chem Soc, vol. 121, pp. 4706-4707, 1999/05/01 1999.
[27]A. A. Herbert and J. R. Guest, "Lipoic acid content of Escherichia coli and other microorganisms," Arch Microbiol, vol. 106, pp. 259-66, Dec 31 1975.
[28]L. J. Reed, B. B. De, I. C. Gunsalus, and C. S. Hornberger, Jr., "Crystalline alpha-lipoic acid; a catalytic agent associated with pyruvate dehydrogenase," Science, vol. 114, pp. 93-4, Jul 27 1951.
[29]V. Gueguen, D. Macherel, M. Jaquinod, R. Douce, and J. Bourguignon, "Fatty acid and lipoic acid biosynthesis in higher plant mitochondria," J Biol Chem, vol. 275, pp. 5016-25, Feb 18 2000.
[30]P. Reche and R. N. Perham, "Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes," EMBO J, vol. 18, pp. 2673-82, May 17 1999.
[31]L. J. Reed, "The Chemistry and Function of Lipoic Acid," in Advances in Enzymology and Related Areas of Molecular Biology, ed: John Wiley & Sons, Inc., 2006, pp. 319-347.
[32]L. Packer, E. H. Witt, and H. J. Tritschler, "Alpha-lipoic acid as a biological antioxidant," Free Radical Biology and Medicine, vol. 19, pp. 227-250, 1995.
[33]F. Navari-Izzo, M. F. Quartacci, and C. Sgherri, "Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species," Plant Physiology and Biochemistry, vol. 40, pp. 463-470, 2002.
[34]"Thioctic Acid and Dihydrolipoic Acid are Novel Antioxidants Which Interact With Reactive Oxygen Species," Free Radic Res, vol. 15, pp. 255-263, 1991.
[35]V. E. Kagan, A. Shvedova, E. Serbinova, S. Khan, C. Swanson, R. Powell, and L. Packer, "Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase: Reduction of peroxyl, ascorbyl and chromanoxyl radicals," Biochem Pharmacol, vol. 44, pp. 1637-1649, 1992.
[36]F. B. Pruijn, G. R. M. M. Haenen, and A. Bast, "Interplay between Vitamin E, Glutathione and Dihydrolipoic Acid in Protection against Lipid Peroxidation," Lipid / Fett, vol. 93, pp. 216-221, 1991.
[37]"Lipoic and Dihydrolipoic Acids as Antioxidants. a Critical Evaluation," Free Radic Res, vol. 20, pp. 119-133, 1994.
[38]A. K. Kiemer, C. Muller, and A. M. Vollmar, "Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages," Immunol Cell Biol, vol. 80, pp. 550-7, Dec 2002.
[39]W. J. Zhang and B. Frei, "Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells," FASEB J, vol. 15, pp. 2423-32, Nov 2001.
[40]U. Pongprayoon, P. Soontornsaratune, S. Jarikasem, T. Sematong, S. Wasuwat, and P. Claeson, "Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: The essential oil," Phytomedicine, vol. 3, pp. 319-322, 1997.
[41]M. D. L. Moretti, A. T. Peana, and M. Satta, "A Study on Anti-Inflammatory and Peripheral Analgesic Action of Salvia sclarea Oil and Its Main Components," Journal of Essential Oil Research, vol. 9, pp. 199-204, 1997/03/01 1997.
[42]C. Bogdan, M. Rollinghoff, and A. Diefenbach, "Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity," Curr Opin Immunol, vol. 12, pp. 64-76, Feb 2000.
[43]H. M. Lander, "An essential role for free radicals and derived species in signal transduction," FASEB J, vol. 11, pp. 118-24, Feb 1997.
[44]C. Brand, A. Ferrante, R. H. Prager, T. V. Riley, C. F. Carson, J. J. Finlay-Jones, and P. H. Hart, "The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro," Inflamm Res, vol. 50, pp. 213-9, Apr 2001.
[45]RIRDC, The Effectiveness and Safety of Australian Tea Tree Oil. Australian Government Rural Industry Research and Developement Corporation, 2007.
[46]H. K. No, N. Y. Park, S. H. Lee, and S. P. Meyers, "Antibacterial activity of chitosans and chitosan oligomers with different molecular weights," Int J Food Microbiol, vol. 74, pp. 65-72, Mar 2002.
[47]Y. C. Chung and C. Y. Chen, "Antibacterial characteristics and activity of acid-soluble chitosan," Bioresource Technology, vol. 99, pp. 2806-2814, May 2008.
[48]P. Calvo, C. RemunanLopez, J. L. VilaJato, and M. J. Alonso, "Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers," Journal of Applied Polymer Science, vol. 63, pp. 125-132, Jan 3 1997.
[49]P. Calvo, C. RemunanLopez, J. L. VilaJato, and M. J. Alonso, "Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines," Pharm Res, vol. 14, pp. 1431-1436, Oct 1997.
[50]Y. P. Hou, J. L. Hu, H. Park, and M. Lee, "Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications," Journal of Biomedical Materials Research Part A, vol. 100A, pp. 939-947, Apr 2012.
[51]Y. H. Lin, H. F. Liang, C. K. Chung, M. C. Chen, and H. W. Sung, "Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs," Biomaterials, vol. 26, pp. 2105-2113, May 2005.
[52]H. Q. Mao, K. Roy, V. L. Troung-Le, K. A. Janes, K. Y. Lin, Y. Wang, J. T. August, and K. W. Leong, "Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency," Journal of Controlled Release, vol. 70, pp. 399-421, Feb 23 2001.
[53]S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes, "Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy," European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, pp. 1-8, Jan 2004.
[54]K. Corsi, F. Chellat, L. Yahia, and J. C. Fernandes, "Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles," Biomaterials, vol. 24, pp. 1255-1264, Mar 2003.
[55]H. Lee, H. P. Shao, Y. Q. Huang, and B. Kwak, "Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan," Ieee Transactions on Magnetics, vol. 41, pp. 4102-4104, Oct 2005.
[56]R. Cavalli, A. Bisazza, M. Trotta, M. Argenziano, A. Civra, M. Donalisio, and D. Lembo, "New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization," Int J Nanomedicine, vol. 7, pp. 3309-3318, 2012.
[57]K. A. Janes, M. P. Fresneau, A. Marazuela, A. Fabra, and M. J. Alonso, "Chitosan nanoparticles as delivery systems for doxorubicin," Journal of Controlled Release, vol. 73, pp. 255-267, Jun 15 2001.
[58]E. Lee, J. Lee, I. H. Lee, M. Yu, H. Kim, S. Y. Chae, and S. Jon, "Conjugated Chitosan as a Novel Platform for Oral Delivery of Paclitaxel," Journal of Medicinal Chemistry, vol. 51, pp. 6442-6449, Oct 23 2008.
[59]J. Akbuga and N. Bergisadi, "Effect of formulation variables on cis-platin loaded chitosan microsphere properties," Journal of Microencapsulation, vol. 16, pp. 697-703, Nov-Dec 1999.
[60]Y. Sun, Z. L. Chen, X. X. Yang, P. Huang, X. P. Zhou, and X. X. Du, "Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy," Nanotechnology, vol. 20, Apr 1 2009.
[61]M. Susan, I. Baldea, S. Senila, V. Macovei, S. Dreve, R. M. Ion, and R. Cosgarea, "Photodamaging effects of porphyrins and chitosan on primary human keratinocytes and carcinoma cell cultures," Int J Dermatol, vol. 50, pp. 280-286, Mar 2011.
[62]R. Cosgarea, M. Susan, S. Senila, I. Baldea, V. Macovei, and S. Dreve, "Photodamaging effects of porphyrins on primary human keratinocytes and carcinoma cell cultures. The evaluation of cytotoxic and phototoxic effect of chitosan on cell cultures," Journal of Investigative Dermatology, vol. 129, pp. S24-S24, Sep 2009.
[63]W. R. Chen, M. Korbelik, K. E. Barteis, H. Liu, J. H. Sun, and R. E. Nordquist, "Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant," Photochemistry and Photobiology, vol. 81, pp. 190-195, Jan-Feb 2005.
[64]S. C. Boca, M. Potara, A. M. Gabudean, A. Juhem, P. L. Baldeck, and S. Astilean, "Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy," Cancer Letters, vol. 311, pp. 131-140, Dec 8 2011.
[65]C. H. Wang, C. W. Chang, and C. A. Peng, "Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment," Journal of Nanoparticle Research, vol. 13, pp. 2749-2758, Jul 2011.
[66]D. W. Lee, S. A. Shirley, R. F. Lockey, and S. S. Mohapatra, "Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline," Respir Res, vol. 7, Aug 24 2006.
[67]A. Berthold, K. Cremer, and J. Kreuter, "Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for antiinflammatory drugs," Journal of Controlled Release, vol. 39, pp. 17-25, Mar 1996.
[68]J. Varshosaz, A. J. Dehkordi, and S. Golafshan, "Colon-specific delivery of mesalazine chitosan microspheres," Journal of Microencapsulation, vol. 23, pp. 329-339, May 2006.
[69]C. P. Dhanalakshmi, L. Vijayalakshmi, and V. Narayanan, "Synthesis, Characterization, Antimicrobial and Antiinflammatory Effect of Chitosan/Hydroxyapatite Nanocomposite," Asian Journal of Chemistry, vol. 24, pp. 5264-5268, Nov 2012.
[70]A. Yamamoto, H. Tozaki, N. Okada, and T. Fujita, "Colon-specific delivery of peptide drugs and anti-inflammatory drugs using chitosan capsules," Stp Pharma Sciences, vol. 10, pp. 23-34, Jan-Feb 2000.
[71]M. Enayati, M. W. Chang, F. Bragman, M. Edirisinghe, and E. Stride, "Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 382, pp. 154-164, Jun 5 2011.
[72]I. Hayati, A. I. Bailey, and T. F. Tadros, "Mechanism of Stable Jet Formation in Electrohydrodynamic Atomization," Nature, vol. 319, pp. 41-43, Jan 2 1986.
[73]A. Jaworek, "Micro- and nanoparticle production by electrospraying," Powder Technology, vol. 176, pp. 18-35, Jul 10 2007.
[74]A. Bohr, J. Kristensen, E. Stride, M. Dyas, and M. Edirisinghe, "Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying," Int J Pharm, vol. 412, pp. 59-67, Jun 30 2011.
[75]A. Bohr, M. Yang, S. Baldursdottir, J. Kristensen, M. Dyas, E. Stride, and M. Edirisinghe, "Particle formation and characteristics of Celecoxib-loaded poly(lactic-co-glycolic acid) microparticles prepared in different solvents using electrospraying," Polymer, vol. 53, pp. 3220-3229, 2012.
[76]I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, "Micro/nano encapsulation via electrified coaxial liquid jets," Science (New York, N.Y.), vol. 295, pp. 1695-1698, 2002.
[77]M. Y. Bai and H. C. Yang, "Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 419, pp. 248-256, Feb 20 2013.
[78]X. Y. Xiao, G. A. Montano, T. L. Edwards, A. Allen, K. E. Achyuthan, R. Polsky, D. R. Wheeler, and S. M. Brozik, "Surface Charge Dependent Nanoparticle Disruption and Deposition of Lipid Bilayer Assemblies," Langmuir, vol. 28, pp. 17396-17403, Dec 18 2012.
[79]S. M. Moghimi and J. Szebeni, "Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties," Prog Lipid Res, vol. 42, pp. 463-478, Nov 2003.
[80]M. T. Peracchia, E. Fattal, D. Desmaele, M. Besnard, J. P. Noel, J. M. Gomis, M. Appel, J. d'Angelo, and P. Couvreur, "Stealth (R) PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting," Journal of Controlled Release, vol. 60, pp. 121-128, Jun 28 1999.
[81]S. D. Li and L. Huang, "Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting," Journal of Controlled Release, vol. 145, pp. 178-181, Aug 3 2010.
[82]Y. J. Wang, Y. C. Chien, C. H. Wu, and D. M. Liu, "Magnolol-Loaded Core-Shell Hydrogel Nanoparticles: Drug Release, Intracellular Uptake, and Controlled Cytotoxicity for the Inhibition of Migration of Vascular Smooth Muscle Cells," Mol Pharm, vol. 8, pp. 2339-2349, Nov-Dec 2011.
[83]M. M. Leane, R. Nankervis, A. Smith, and L. Illum, "Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms," Int J Pharm, vol. 271, pp. 241-249, Mar 1 2004.
[84]P. L. L. Dealba, L. Lopezmartinez, and M. G. Garcia, "Spectrophotometric Determination of the Chitosan Purity by Reaction with Ninhydrin," Anales De Quimica, vol. 86, pp. 801-804, 1990.
[85]A. K. Kiemer, C. M. Ller, and A. M. Vollmar, "Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages," Immunol Cell Biol, vol. 80, pp. 550-557, Dec 2002.
[86]A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, "Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles," ACS Nano, vol. 4, pp. 5321-5331, Sep 2010.
[87]K. A. Mahmoud, J. A. Mena, K. B. Male, S. Hrapovic, A. Kamen, and J. H. T. Luong, "Effect of Surface Charge on the Cellular Uptake and Cytotoxicity of Fluorescent Labeled Cellulose Nanocrystals," ACS Appl Mater Interfaces, vol. 2, pp. 2924-2932, Oct 2010.
[88]S. Bhattacharjee, D. Ershov, J. van der Gucht, G. M. Alink, I. M. C. M. Rietjens, H. Zuilhof, and A. T. M. Marcelis, "Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles," Nanotoxicology, vol. 7, pp. 71-84, Feb 2013.
[89]I. Eger and M. J. Soares, "Endocytosis in Trypanosoma cruzi (Euglenozoa: Kinetoplastea) epimastigotes: Visualization of ingested transferrin-gold nanoparticle complexes by confocal laser microscopy," Journal of Microbiological Methods, vol. 91, pp. 101-105, Oct 2012.
[90]H. Cang, C. M. Wong, C. S. Xu, A. H. Rizvi, and H. Yang, "Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts," Applied Physics Letters, vol. 88, May 29 2006.
[91]A. Lemelle, B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, "Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy," Laser Physics Letters, vol. 6, pp. 71-75, Jan 2009.
[92]A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, "Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension," J Biomed Opt, vol. 7, pp. 398-403, Jul 2002.
[93]N. M. Robertson, G. Schulman, S. Karnik, E. Alnemri, and G. Litwack, "Demonstration of Nuclear Translocation of the Mineralocorticoid Receptor (Mr) Using an Anti-Mr Antibody and Confocal Laser-Scanning Microscopy," Molecular Endocrinology, vol. 7, pp. 1226-1239, Sep 1993.
[94]S. C. Massey and S. L. Mills, "Antibody to calretinin stains AII amacrine cells in the rabbit retina: Double-label and confocal analyses," Journal of Comparative Neurology, vol. 411, pp. 3-18, Aug 16 1999.

無法下載圖示 全文公開日期 2018/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE