簡易檢索 / 詳目顯示

研究生: 胡悅群
Yue-Qun Hu
論文名稱: 基於改進相位差法的電力電纜局部放電定位
Partial Discharge Location of Power Cables Based on an Improved Phase Difference Method
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 電力電纜PD定位改進相位差法HOS標準GCV閾值
外文關鍵詞: power cable, PD location, improved phase difference method, HOS criterion, GCV thresholding
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文致力於在低信噪比的雜訊環境下,僅使用一個感測器的情況下仍能獲得較好的電纜局部放電(Partial discharge,PD)定位效果的研究。因此,基於單端感測器且適用於低信噪比雜訊環境下PD定位的改進相位差法被使用。同時,為提高改進相位差法在低信噪比雜訊環境下的定位準確度,一種結合高階統計量(High-order statistics,HOS)標準與廣義交叉校驗(General cross-validation,GCV)閾值的新型快速濾波演算法被提出來處理PD到達脈衝信號。最後,為避免使用脈衝峰值檢測法檢測到純雜訊的峰值而引起定位誤判,制定了純雜訊信號與包含雜訊的PD信號的區分策略。經過一系列模擬實驗,可得到以下結論:
    1. 脈衝峰值檢測法檢測到的PD到達脈衝波形初至時刻幾乎可等同於真實的PD到達脈衝波形初至時刻,因而其應用於改進相位差法的PD定位的結果非常準確。
    2. 相比於HOS標準濾波演算法和GCV閾值濾波演算法,本文所提出的新型濾波演算法能夠有效消除雜訊,更好地還原PD信號到達脈衝波形。
    3. 同樣使用新型濾波演算法進行濾波定位的條件下,改進相位差法能在-10dB和-15dB的低信噪比雜訊環境中,實現比時域反射(Time domain reflectometry,TDR)法更準確的PD定位。
    4. 制定的區分策略使用一個區分閾值來判別純雜訊信號與包含雜訊的PD信號,其判別效果優異,這充分說明了區分策略的有效性。


    This thesis aims to use only one sensor to achieve better PD location of power cables in the low signal-to-noise ratio (SNR) noise environment. Therefore, an improved phase difference (IPD) method based on one sensor is used, which is suitable for PD location in the low SNR noise environment. In order to enhance the accuracy of the IPD method in the noise environment, a new denoising algorithm combining high-order statistics (HOS) criterion and generalized cross-validation (GCV) thresholding is proposed to process PD signals. Finally, a discriminant strategy is developed to avoid misjudgment of PD location when peaks of pure noise signals are detected using pulse peak detection. Through simulation experiments, the following conclusions can be obtained:
    1. The arrival time of the PD pulse detected by the pulse peak detection method is almost equal to the actual arrival time of the PD pulse, which makes the result of the PD location very accurate.
    2. Comparing with the HOS criterion denoising algorithm and the GCV thresholding denoising algorithm, the proposed denoising algorithm in this paper can better reduce the interference of noise on PD signals, and helps the IPD method obtain higher location accuracy.
    3. Based on the same use of the proposed denoising algorithm, the IPD method can achieve more accurate PD location than the TDR method in a noisy environment with SNR of -10dB and -15dB.
    4. The discriminant strategy proposed in this paper perfectly separates the pure noise signal from the noisy PD signal, which fully proves the effectiveness of the discriminant strategy.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.1.1 電網可靠輸電的重要性 1 1.1.2 電力電纜局部放電診斷 1 1.2 研究現狀 2 1.2.1 基於PD感測器數量的定位方法分類 3 1.2.2 PD信號處理的定位研究 5 1.3 研究意義 7 1.4 章節概述 8 第二章 電力電纜PD定位 10 2.1 電纜PD定位系統 10 2.2 電纜PD信號檢測方法 11 2.2.1 差分法 11 2.2.2 電容耦合法 13 2.2.3 高頻電流互感器法 16 2.2.4 聲波發射法 17 2.3 時域反射法 18 2.4 相位差法以及改進相位差法 20 2.4.1 相位差法 21 2.4.2 改進相位差法 23 2.5 本章小結 24 第三章 新型濾波演算法 26 3.1 連續小波變換基本理論 26 3.1.1 連續小波變換 26 3.1.2 連續小波變換計算性質 28 3.1.3 基本小波函數 31 3.2 小波閾值 33 3.2.1 閾值選取規則 33 3.2.2 閾值函數 36 3.3 新型濾波演算法 38 3.3.1 高階統計量標準 40 3.3.2 廣義交叉驗證閾值法 42 3.3.3 斐波那契搜索 43 3.4 雜訊區分策略 47 3.5 本章小結 48 第四章 實驗系統搭建以及結果分析 49 4.1 電纜PD定位系統搭建 49 4.1.1 電纜PD定位系統模型 49 4.1.2 脈衝峰值檢測法檢測效果驗證 53 4.2 新型濾波演算法濾波效果 54 4.3 改進相位差法定位效果 60 4.4 雜訊區分策略效果 64 4.5 本章小結 71 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 73 參考文獻 74

    [1] Eigner A, and Rethmeier K. 2016. “An overview on the current status of partial discharge measurements on AC high voltage cable accessories.” IEEE Electrical Insulation Magazine 32 (2): 48-55. doi: 10.1109/MEI.2016.7414231.
    [2] International Electrotechnical Commission (IEC). 2000. “Standard IEC. 60270 (2000), Partial Discharge Measurements.” Geneva, Switzerland.
    [3] 劉蓉. 2015. “基於超聲法的XLPE電力電纜絕緣缺陷檢測診斷技術研究” 博士論文, 西北工業大學.
    [4] G. Katsuta, A. Toya, K. Muraoka, T. Endoh, Y. Sekii, and C. Ikeda. 1992. “Development of a method of partial discharge detection in extra-high voltage cross-linked polyethylene insulated cable lines.” IEEE Transactions on Power Delivery 7 (3): 1068-1079. doi: 10.1109/61.141815.
    [5] Lipeng Zhong, Yang Xu, George Chen, A.E. Davies, Z. Richardson, and S.G. Swingler. 2001. “Use of capacitive couplers for partial discharge measurements in power cables and joints.” Proceedings of the 20001 IEEE 7th International Conference on Solid Dielectrics, Eindhoven, 25-29 June 2001.
    [6] Xiao Gu, Yang Xu, Rong Xia, Shaoxin Meng, and Yuli Wang. 2016. “On-line calibration of partial discharge monitoring for power cable by HFCT method.” 2016 IEEE Electrical Insulation Conference (EIC), Montreal, 19-22 June 2016.
    [7] Casals-Torrens P, González-Parada A, and Bosch-Tous R. 2012. “Online PD detection on high voltage underground power cables by acoustic emission.” Procedia Engineering 35: 22-30. doi: 10.1016/j.proeng.2012.04.161.
    [8] Mashikian M S, Bansal R, and Northrop R B. 1990. “Location and characterization of partial discharge sites in shielded power cables.” IEEE Transactions on Power Delivery 5(2): 833-839. doi: 10.1109/61.53090.
    [9] Cavallini A, Montanari G C, and Puletti F. 2007. “A novel method to locate PD in polymeric cable systems based on amplitude-frequency (AF) map.” IEEE Transactions on Dielectrics and Electrical Insulation 14 (3): 726-7342007. doi: 10.1109/TDEI.2007.369537.
    [10] Mardiana R, and Su C Q. 2010. “Partial discharge location in power cables using a phase difference method.” IEEE Transactions on Dielectrics and Electrical Insulation 17 (6): 1738-1746. doi: 10.1109/TDEI.2010.5658224.
    [11] 謝敏, 周凱, 何瑉, 趙世林, 張福忠. 2018, “基於時間反演技術的電力電纜局部放電定位方法.” 中國電機工程學報38 (11): 29. doi:10.13334/j.0258-8013.pcsee.171019
    [12] Bojie Sheng, Chengke Zhou, Donald M. Hepburn, Xiang Dong, Graham Peers, Wenjun Zhou, and Zeyang Tang. 2015. “A novel on-line cable pd localisation method based on cable transfer function and detected pd pulse rise-time.” IEEE Transactions on Dielectrics and Electrical Insulation 22 (4): 2087-2096. doi: 10.1109/TDEI.2015.004398.
    [13] Shim I, Soraghan J J, Siew W H, F. McPherson, and P.F. Gale. 1999. “Partial discharge location on high voltage cables.” 1999 Eleventh International Symposium on High Voltage Engineering, London, 27-23 Augest 1999.
    [14] Mohamed F P, Siew W H, Soraghan J J, S. M. Strachan and J. McWilliam. 2013. “Partial discharge location in power cables using a double ended method based on time triggering with GPS.” IEEE Transactions on Dielectrics and Electrical Insulation 20 (6): 2212-2221. doi: 10.1109/TDEI.2013.6678872
    [15] Yii C C, Rohani M, Isa M, and S. I. S. Hassan. 2015. “Three-point technique for partial discharge location on XLPE armoured underground cable.” Applied Mechanics and Materials 793 119-123. doi:10.4028/www.scientific.net/AMM.793.119.
    [16] Yii C C, Rohani M, Isa M, and S. I. S. Hassan. 2017. “Multi-end PD location algorithm using segmented correlation and trimmed mean data filtering techniques for MV Underground Cable.” IEEE Transactions on Dielectrics and Electrical Insulation 24(1): 92-98. doi: 10.1109/TDEI.2016.005902
    [17] Park S H, Jung H E, Yun J H, Byoung-Chul Kim, Seong-Hwa Kang, and Kee-Joe Lim. 2008. “Classification of defects and evaluation of electrical tree degradation in cable insulation using pattern recognition method and weibull process of partial discharge.” 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, 21-24 April 2008.
    [18] Xinyu Ji, Yanqing Li, Zijian Wang, Fa Wang, Qian Liu, and Qian Liu. 2011. “Partial discharge pattern recognition of XLPE cable connector based on support vector machine.” 2011 International Conference on Electrical and Control Engineering, Yichang, 16-18 September. 2011.
    [19] T.K. Abdel-Galil, R.M. Sharkawy, M.M.A. Salama, and R. Bartnikas. 2005. “Partial discharge pulse pattern recognition using an inductive inference algorithm.” IEEE Transactions on Dielectrics and Electrical Insulation 12 (2): 320-327. doi: 10.1109/TDEI.2005.1430400.
    [20] Y.-H. Kim, Y.-W. Youn, S.-H. Yi, D.-H. Hwang, J.-H. Sun, and J.-H. Lee. 2014. “High-resolution partial discharge location estimation in power cables.” IEEE Transactions on Dielectrics and Electrical Insulation 21(2): 758-765. doi: 10.1109/TDEI.2013.004176
    [21] 孫抗, 郭景蝶, 楊延舉, 馬星河. 2017. “基於AIC準則和時窗能量比的電纜局部放電在線檢測與定位.” 傳感技術學報 30 (8): 1209-1214. doi: 10.3969 /j.issn.1004-1699.2017.08.014
    [22] 孫抗, 郭景蝶, 馬星河. 2017. “高壓電纜局部放電小波包-峰度法在線檢測與定位.” 電子測量與儀器學報 31(7): 1099-1106. doi:10.13382/j.jemi.2017.07.016.
    [23] Poularikas A D. 2010. Transforms and applications handbook. CRC press.
    [24] Mousavi, S. Mostafa, and Charles A. Langston. 2017. “Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data.” Geophysics 82 (4): 211–227. doi: 10.1190/geo2016-0433.1.
    [25] 胡廣書. 2015. 現代信號處理教程.第2版. 北京:清華大學出版社.
    [26] Daniel Valencia, David Orejuela, Jeferson Salazar, and Jose Valencia. 2016. Comparison analysis between rigrsure, sqtwolog, heursure and minimaxi techniques using hard and soft thresholding methods, 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA). Bucaramanga, 31 August-2 September, 2016.
    [27] Ravier, Philippe, and Pierre-Olivier Amblard. 2001. “Wavelet packets and de-noising based on higher-order-statistics for transient detection.” Signal processing 81(9): 1909-1926. doi: 10.1016/S0165-1684(01)00088-3.
    [28] Tsolis G, and Xenos T D. 2011. “Signal denoising using empirical mode decomposition and higher order statistics.” International Journal of Signal Processing, Image Processing and Pattern Recognition 4 (2): 91-106.
    [29] Jansen M, Malfait M, and Bultheel A. 1997, “Generalized cross validation for wavelet thresholding.” Signal processing 56 (1): 33-44. doi: 10.1016/S0165-1684(97)83621-3
    [30] Mathews J H, and Fink K D. 2004. Numerical methods using MATLAB. Upper Saddle River, NJ: Pearson Prentice Hall.
    [31] L. Marti, 1998. “Simulation of transient in underground cables with frequency–dependent modal transformation matrices.” IEEE Transactions on Power Delivery 3: 1099-1110, 1988. doi: 10.1109/61.193892.
    [32] R.A. Rivas, and L. Marti. 2002. “Calculation of frequency–dependent parameters of power cables: matric partitioning techniques,” IEEE Transactions on Power Delivery 17: 1085-1092. doi: 10.1109/TPWRD.2002.803827.
    [33] Marti J R. 1982. “Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations.” IEEE transactions on power apparatus and systems PAS-101 (1): 147-157. doi: 10.1109/TPAS.1982.317332.
    [34] Zhifang Du, P. K. Willett, and M. S. Mashikian. 1997. “Performance limits of PD location based on time-domain reflectometry.” IEEE Transactions on Dielectrics and Electrical Insulation 4(2): 182-188. doi: 10.1109/94.595245.

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE