簡易檢索 / 詳目顯示

研究生: 劉建邦
Chien-Pang Liu
論文名稱: 改質紗網對懸浮微粒隔離效果之研究
Study on Modified mesh for Blocking off Suspended Particulates
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
田維欣
Wei-Hsin Tien
黃嘉宏
Chia-Hung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 懸浮微粒表面改質紗網
外文關鍵詞: suspended particulate, surface modification, mesh
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PM2.5為大氣中的細小懸浮顆粒,易吸附有毒物質而易沉積於氣管內,引起呼吸性的疾病,因此,發展能有效隔離PM2.5的材料是現今重要的研究議題,本文以提升紗網隔離效率為研究主軸。
    本研究首先建立穩定的測試系統、測試市售紗網的去除效率,並對不鏽鋼紗網進行表面改質,利用高分子材料的表面特性、奈米粒子的高比表面積及化學特性改善去除效率,分析製程參數之效應以找出最適化製備條件,並以離子層析儀、傅立葉轉換紅外線光譜儀及水滴接觸角量測儀探討其去除機制。研究結果顯示,紗網的去除效率與壓損、網目數以及線徑的寬窄有直接的相關性,壓損及網目數的增加能有效提升去除效率。利用液態矽膠A1以及奈米粒子B1對表面進行改質能提升12-20%以及20-25%的去除效率,且改質之最適擔載量會隨紗網的網目及線徑而改變,隨著線徑越小,所需的改質量也相對較少。進一步進行長時間光照、清洗測試,結果顯示液態矽膠A1具耐水洗與耐紫外線的特性,而奈米粒子B1則有水洗後固定化不佳的缺點。最後將改質紗網進行實場測試,結果亦顯示其去除效率與標準測試系統的結果一致,顯示其具有實用化潛力。


    PM2.5 is the fine suspended particulate in the atmosphere. It adsorbs toxic substances easily and deposited at the trachea, causing respiratory diseases. Therefore, the development of materials for effective isolation PM2.5 from indoor environment becomes an important research topic nowadays. This work focused on improving the isolated efficiency of screen-window material for fine particulate.
    In this study, a stable test system was firstly established to evaluation the isolated efficiency of several commercial meshes. The surface of stainless steel mesh was furtherly modified for the enhancement of its efficiency. The isolated efficiency of stainless steel mesh was increased in the presence of liquid silicone on its surface due to its viscous properties. A coating of nanoparticle with high surface area and hydrophilicity properties also resulted in the improvement of isolated efficiency. The effects of manufacture parameters on isolated efficiency were analyzed to obtain the optimal preparation conditions. The isolation mechanisms were investigated by using ion chromatography, Fourier transform infrared spectrometer, and contact angle meter. The results showed that the isolation efficiency of mesh is directly proportional to the pressure drop, the number of meshes, and the wire diameter. The liquid silicone A1 and nanoparticle B1 used as surface modifier can increase the isolation efficiency by 12-20% and 20%-25%, respectively. The optimum loading amount of modifier will be changed with the mesh number and wire diameter. The smaller wire diameter is, the less loading amount of modifier is. The UV-illumination and wash-fastness tests were further carried out, indicating the liquid-silicone A1 coating exhibits well stability, while a few nanoparticles B1 will be washed out by water. Finally, the modified mesh was applied in field tests with using a joss stick as particulate source. The isolation efficiency was consistent with the result of the standard test system, indicating the practicality of this modified mesh.

    摘要 I ABSTRACT II 致謝 IV 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1空氣污染對人體的影響 1 1.2研究目的與動機 2 第二章 文獻回顧 3 2.1室內與室外空氣品質 3 2.2懸浮微粒 3 2.2.1懸浮微粒污染物 3 2.2.2懸浮微粒污染物表面特性 4 2.2.3環境因素對懸浮微粒的影響 5 2.3空氣中懸浮微粒過濾原理與機制 7 2.4室內懸浮微粒過濾技術 10 2.4.1機械式過濾 10 2.4.2電器式過濾 12 2.4.3帶電介質濾材過濾 14 2.4.4靜電紡絲 16 2.5防霧霾紗網產品 19 2.6過濾品質指標 21 2.6.1收集效率 21 2.6.2微粒穿透率 21 2.6.3效能指標 21 2.6.4濾材之總過濾效率 22 第三章 實驗 23 3.1實驗規劃 23 3.2實驗藥品及材料 24 3.3實驗設備與分析儀器 25 3.4實驗方法 27 3.4.1改質紗網製備 27 3.4.1氣膠微粒的生成 27 3.4.2氣膠微粒穿透率量測 27 3.4.3實驗箱體的設計 27 3.4.4實驗步驟 29 3.5各項性質測定方法 30 3.5.1紗網壓損量測 30 3.5.2透光率測試 30 3.5.3黃化測試 30 3.5.4高分子表面官能基測試 31 3.5.5水滴接觸角測試 31 第四章 實驗結果與討論 32 4.1建立測試系統 32 4.2相對濕度對微粒的影響 34 4.3市售紗網測試 35 4.3.1市售紗網去除效率 35 4.3.2不同網目數之不鏽鋼紗網比較 36 4.3.3孔徑與透光率關係 38 4.3.4相對濕度對紗網去除效率的影響 40 4.4不鏽鋼紗網表面改質材料的選擇 43 4.4.1高分子材料表面改質 43 4.4.2奈米粒子表面改質 45 4.5表面改質擔載量之去除效率 48 4.5.1液態矽膠A1浸鍍次數對去除效能的影響 48 4.5.2奈米粒子B1浸鍍次數對去除效能的影響 50 4.6不同線徑不鏽鋼紗網與其表面改質後之去除效率 52 4.6.1不同線徑不鏽鋼紗網 52 4.6.2小線徑不鏽鋼紗網表面改質之去除效率 57 4.6.3耐水洗測試 61 4.6.4耐紫外線測試 65 4.6.5小結 67 4.7去除機制的探討 71 4.7.1親疏水性質 71 4.7.2表面官能基探討 72 4.7.3粒子親和性 74 4.8實場測試 76 第五章 結論與未來展望 81 5.1網目數及線徑寬的效應 81 5.2表面改質影響去除效率之機制 81 5.3擔載量優化條件 81 5.4實場測試 82 5.5 優化表面改質紗網選擇 82 5.6未來展望 82 5.6.1 懸浮微粒的選擇 82 5.6.2 紗網材質與限制 83 5.6.3 改質材料與方式 83

    [1] P. S. Patel, "Characterization of nanoparticle emissions from 3D printers in different environments," San Diego State University, 2016.
    [2] D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, "An association between air pollution and mortality in 6 United-States cities," New England Journal of Medicine, vol. 329, no. 24, pp. 1753-1759, 1993.
    [3] K. P. Beckett, P. H. Freer, G. Taylor, "Effective tree species for local air-quality management," Journal of Arboriculture, vol. 26, no. 1, pp. 12-19, 2000.
    [4] 李芝珊,“氣膠與健康”,第4卷第5期, 環保科技通訊,1992
    [5] J. W. Erisman and G. Draaijers, "Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation," Environmental Pollution, vol. 124, no. 3, pp. 379-388, 2003.
    [6] W. J. Zhang, Y.-L. Sun, G.-S. Zhuang, and D.-Q. Xu, "Characteristics and Seasonal Variations of PM2.5, PM10, and TSP Aerosol in Beijing," Biomedical and Environmental Sciences 19, pp. 461-468, 2006.
    [7] J. Sundell, "Education and Training in Indoor Air Sciences," Springer pp.9-18, 1999.
    [8] C. Chen and B. Zhao, " Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor," Atmospheric Environment, vol. 45, no. 2, pp. 275-288, 2011.
    [9] J. A. Bernstein, N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S. M. Tarlo, " The health effects of non-industrial indoor air pollution," Journal of Allergy and Clinical Immunology, vol. 121, no. 3, pp. 585-591, 2008.
    [10] J. E. Yocom, "Indoor-Outdoor Air Quality Relationships:A Critical Review," Journal of the Air Pollution Control Association, vol. 32, no. 5, pp. 500-520, 1982.
    [11] D. D. Parrish, "Critical evaluation of US on-road vehicle emission inventories," Atmospheric Environment, vol. 40, no. 13, pp. 2288-2300, 2006.
    [12] K. Katsouyanni, "Ambient air pollution and health," British Medical Bulletin, vol. 68, no. 1, pp. 143-156, 2003.
    [13] C. Liu, P. C. Hsu, H. W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, "Transparent air filter for high-efficiency PM2.5 capture," Nature Communications, vol. 6, p. 6205, 2015.
    [14] M. Corn, "The Adhesion of Solid Particles to Solid Surfaces, I.a Review," Journal of the Air Pollution Control Association, vol. 11, no. 11, pp. 523-528, 1961.
    [15] M. Corn, "The Adhesion of Solid Particles to Solid Surfaces II," Journal of the Air Pollution Control Association, vol. 11, no. 12, pp. 566-584, 1961.
    [16] W. W. Nazaroff, " Indoor bioaerosol dynamics," Indoor Air, vol. 26, no. 1, pp. 61-78, 2014.
    [17] A. Ferro, R. Kopperud, L. Hildemann," Source strengths for indoor humanactivities that resuspend particulate matter," Environmental Science and Technology, vol. 38, no. 6, pp. 1759-1764, 2004.
    [18] T. L. Thatcher and D. W. Layton, "Deposition, Resuspension, and Penetration of Particles Within a Residence," Atmospheric Environment, vol. 29, no. 13, pp. 1487-1497, 1995.
    [19] M. Corn, F. Stein, " Re-entrainment of particles from a plane surface," American Industrial Hygiene Association Journal, vol. 26, no. 4, pp. 325-336, 2014
    [20] J. Qian, J. Peccia, and A. R. Ferro, "Walking-induced particle resuspension in indoor environments," Atmospheric Environment, vol. 89, pp. 464-481, 2014.
    [21] Y. Tian, K. Sul, J. Qian, S. Mondal, and A. R. Ferro, "A comparative study of walking-induced dust resuspension using a consistent test mechanism," Indoor Air, vol. 24, no. 6, pp. 592-603, 2014.
    [22] O. R. Walton, " Review of adhesion fundamentals for micron-scale particles," KONA Powder and Particle Journal, vol. 26, pp. 129-141, 2008.
    [23] W. C. Hinds, "Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles," Wiley, 1999.
    [24] A. H. Ibrahim, P.F. Dunn, R. M. Brach, " Microparticle detachment from surfaces exposed to turbulent air flow: effects of flow and particle deposition characteristics," Journal of Aerosol Science, vol. 35, pp. 805-821, 2004.
    [25] Y. I. Rabinovich, J. J. Adler, M. S. Esayanur, A. Ata, R. K. Singh, B. M. Moudgil, " Capillary forces between surfaces with nanoscale roughness," Advances in Colloid and Interface Science, vol. 96, pp. 213-230, 2002.
    [26] J. Rosati, J. Thornburg, C. Rodes, " Resuspension of particulate matter from carpet due to human activity," Aerosol Science and Technology, vol. 42, pp. 472-482, 2008.
    [27] P. Salimifard, D. Rim, C. Gomes, P. Kremer, and J. D. Freihaut, "Resuspension of biological particles from indoor surfaces: Effects of humidity and air swirl," Science of the Total Environment, vol. 583, pp. 241-247, 2017.
    [28] W. G. Lindsley, "Filter Pore Size and Aerosol Sample Collection," NIOSH Manual of Analytical Methods, pp. 2-6, 2016.
    [29] K. K. Isaacs, J. A. Rosati, T. B. Martonen, " Mechanisms of Particle Deposition," in Aerosols Handbook: Measurement, Dosimetry, and Health Effects, L. S. Ruzer and N. H. Harley, eds., CRC Press, Boca Raton, FL, pp. 75-99. 2005.
    [30] W. C. Hinds, "Aerosol technology: properties, behavior, and measurement of airborne particles," Wiley, 1999.
    [31] Z. Zhong, Z. Xu, T. Sheng, J. Yao, W. Xing, and Y. Wang, "Unusual Air Filters with Ultrahigh Efficiency and Antibacterial Functionality Enabled by ZnO Nanorods," ACS Applied Materials & Interfaces, vol. 7, no. 38, pp. 21538-44, 2015.
    [32] M. Maloney, B. Wray, R. DuRant, L. Smith, " Effects of an electronic air cleaner and negative ionizer on the population of indoor mold spores," Annals of Allergy, Asthma & Immunology, pp.192-194, 1987
    [33] T. Y. Wen, I. Krichtafovitch, and A. V. Mamishev, "Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-plate-covered collecting electrodes," Journal of Aerosol Science, vol. 79, pp. 40-47, 2015.
    [34] T. Han and G. Mainelis, "Design and Development of an Electrostatic Screen Battery for Emission Control (ESBEC)," Journal of Aerosol Science, vol. 107, pp. 74-83, 2017.
    [35] S. R. Ardkapan, M. S. Johnson, S. Yazdi, A. Afshari, and N. C. Bergsøe, "Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition," Journal of Aerosol Science, vol. 72, pp. 14-20, 2014.
    [36] K. M. Sim, H. S. Park, G. N. Bae, and J. H. Jung, "Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop," Science of the Total Environment, vol. 533, pp. 266-74, 2015.
    [37] 李慧梅、楊心豪,帶電荷濾材對室內空氣過濾效率之影響,行政院國家科學委員會補助專題研究計畫成果報告,2002.
    [38] D. Y. Choi, S. H. Jung, D. K. Song, E. J. An, D. Park, T.O. Kim, J. H. Jung, H. M. Lee, "Al-Coated Conductive Fibrous Filter with Low Pressure Drop for Efficient Electrostatic Capture of Ultrafine Particulate Pollutants," ACS Applied Materials & Interfaces, vol. 9, no. 19, pp. 16495-16504, 2017.
    [39] A. Frenot and I. S. Chronakis, "Polymer nanofibers assembled by electrospinning," Current Opinion in Colloid & Interface Science, vol. 8, no. 1, pp. 64-75, 2003.
    [40] W. C. Hinds, "Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles," Wiley, 1998.

    無法下載圖示 全文公開日期 2023/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE