簡易檢索 / 詳目顯示

研究生: 林文宗
Wen-Tsung Lin
論文名稱: 磨毛織物表面特性與舒適性最佳化加工參數之研究
Research on the application of multi-quality processing parameters optimization to the development of functional warm fabrics
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 郭中豐
Chung-Feng Jeffrey Kuo
黃昌群
Chung-Ching Huang
蘇德利
Te-Li Su
廖文城
Wen-Chang Liaw
張嘉德
Chia-Der Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 44
中文關鍵詞: 磨毛機表面柔軟度田口方法色差透濕度熱導度
外文關鍵詞: Sueding machine, Fabric surface softness, Taguchi method, Color difference, Water vapor transmission, thermal transport
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於人們對於服飾穿著特性之要求漸漸的提高,各種附加機能性的織物隨之誕生,以迎合消費者在穿著時對品質特性與舒適感的追求。在特定環境條件下,對衣物表面感受與舒適性的體驗,受到織物的色差、觸感柔軟度、透濕度及熱導度性質的影響極大。現代紡織上一般採用後整理的方法來提高織物的外觀或其他性能,磨毛加工即為一種常見的後整理方法。目前在磨毛加工過程中,為符合感官變化感受與舒適性之要求,必須依各材料特性加以調整,主要方法在於加工參數的設定。本研究將織物感官品質特性的表面柔軟度(surface softness)與色差(color difference)及主要舒適特性的透濕度(water vapor transmission)及熱導度(thermal transport),利用田口方法結合灰關聯分析(grey relational analysis) 與模糊推論(fuzzy approach)求出最佳化多重品質特性的磨毛加工參數組合。首先,對磨毛機主要之加工參數,以田口方法之實驗規劃法規劃直交表。將量測之織物表面柔軟度、色差與透濕度、熱導度數據計算雜訊比(S/N),再進行變異數分析(analysis of variance, ANOVA),獲得對品質特性影響較大的顯著因子,再利用灰關聯與模糊推論分析,由回應表與回應圖取得多重品質特性的最佳加工參數組合。以此最佳加工參數組合設定加工參數,可有效控制磨毛布的感官品質特性及舒適品質特性,並經由確認實驗以95%信心區間驗證實驗具有可靠性與再現性。


    In recent years, as consumers have higher demands for the functionality of clothing, fabrics with additional functionality have been developed. The state of physical functionality experienced by a wearer under a given environmental condition is greatly influenced by the surface softness, color difference, thermal and moisture transport properties of the fabric. In modern textiles, finishing is generally used to improve the appearance or other properties of fabrics. Sueding is a common finishing method. In order to meet the requirements of functionality in the process of sueding, the production process must be adjusted according to the features of fabrics. The main method is the setting of processing parameters. This study focuses on the surface softness, color difference, water vapor transmission and thermal transport, which are the main functional characteristics, and uses the Taguchi method combined with grey relational analysis and fuzzy approach to acquire the combination of sueding processing parameters to optimize multiple functional characteristics. Firstly, for the main processing parameters of the sueding machine, the Taguchi Method is used to obtain orthogonal array for the experimental design. The measured surface softness, color difference, water vapor transmission and thermal transport data of the fabric are used to calculate the signal to noise (S/N) ratio. Analysis of variance (ANOVA) is conducted to obtain the significant factors with a greater impact on functional characteristics. The grey relational analysis and fuzzy approach are used to analyze and obtain the optimal combination of processing parameters of multiple functional characteristics. The quality of suede fabric can be controlled effectively by using the optimum processing parameters to set the processing parameters, and the 95% confidence interval validates the reliability and reproducibility of experiment.

    目錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 圖目錄 VI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 5 1.4 研究步驟 7 第2章 磨毛系統架構與實驗方法 8 2.1 田口方法 11 2.2 變異數分析 12 第3章 灰關聯理論 15 第4章 模糊理論 17 4.1 模糊集合理論 17 4.2 模糊控制器架構 19 4.3 模糊推論田口方法 20 第5章 結果與討論 23 5.1 表面柔軟度與色差檢測 23 5.2 透濕度及熱導度檢測 29 第6章 結論及未來研究之發展 41 參考文獻 44

    參考文獻
    1. Bessem, K., Morched, C., & Chiraz, K. S., Mechanical behaviour of seams on treated fabrics, AUTEX Research Journal 2009; 9(3), 87-92.
    2. Roh, E. K., Oh K.W., & Kim, S. H., Effect of raising cycles on mechanical, comfort, and hand properties of artificial suede, Textile Research Journal 2014; 84(18), 1995-2005.
    3. Luis, V. & Arun, N., Frictional behavior of textile fabrics, Textile Research Journal 2000; 70(3), 256-260.
    4. Hoffmeyer, C.L. Color control for suedelike polymeric sheet materials Patent 3,619,253 1971; USA.
    5. Hasani, H., Tabatabaei, S. A., & Amiri, G., Grey relational analysis to determine the optimum process parameters for open-end spinning yarns, Journal of Engineered Fibers and Fabrics 2012; 7(2), 81-86.
    6. Kuo, C.F.J. & Lin, W.T., Design and verification of fabric surface softness testing system, Textile Research Journal 2011; 81(16), 1724-1732.
    7. Kuo, C. F. J. & Tu, H. M., Gray relational analysis approach for the optimization of process setting in textile calendering, Textile Research Journal 2009; 79(11), 981-992.
    8. Kuo, C. F. J. & Su, T. L., Optimization of injection molding processing parameters for LCD light-guide plates, Textile Research Journal 2007; 16(5), 530-548.
    9. 孫宗瀛、楊英魁編著,“Fuzzy控制理論、實作與應用”,全華科技公司,1998.
    10. 王進德、蕭大全編著,“類神經網路與模糊控制理論入門”,全華科技公司1994.
    11. Palanikumara, K., Lathab, B., Senthilkumarc, V. S., and Davimd J. P., Analysis on drilling of glass fiber-reinforced polymer (GFRP) composites using grey relational analysis, Materials and Manufacturing Processes 2012; 27(3), 297-305.
    12. Deng J., Introduction to gray system theory, Journal of Grey System 1989; 1, 1-24.
    13. Baker L., Optical transfer function: fundamental theory, 1995.
    14. Tkalcic M. and Tasic J., Colour spaces-perceptual, historical and applicational background, The IEEE Region 8EUROCON 2003. Computer as a Tool 2003; 304-308.
    15. Sheela, R. & Sreenivasan, S., Total wear comfort index as an objective parameter for characterization of overall wearability of cotton fabrics. Journal of Engineered Fibers and Fabrics 2009; 4, 29-41.
    16. Manickam, P. & Kumar, R., Effect of fabric softener on thermal comfort of cotton and polyester fabrics. Indian Journal of Fibre & Textile Research 2007; 32, 446-452.
    17. Taguchi, G., Introduction to quality engineering, Asian Productivity Organization 1986; Tokyo.
    18. Ross, P. J., Taguchi techniques for quality engineering. McGraw-Hill, 1996; New York.
    19. Macdonald J., Geometrical optics and optical design, Oxford University Press, USA, 1991.
    20. Fowlkes W.Y. and Creveling C.M., Engineering methods for robust product design, using Taguchi methods in technology and product development, Addison-Wesley, Massachusetts, 1995.
    21. Deng J., Gray control system, Huazhong Engineering College Press, Wuhang, China, 1985.
    22. Zadeh L.A., Fuzzy sets, Information and Control, 1965, 8, 338-353.
    23. Lu D. and Antony J., Optimization of multiple responses using a fuzzy-rule based inference system, International Journal of Production Research, 2002, 40, 1613-1625.
    24. Zimmermann H.J., Fuzzy set theory and its applications, Kluwer Acadeemic, London, 1985.
    25. Xu B., Dale D.S., Huang Y., Watson M.D., Cotton color classification by fuzzy logic. Textile Research Journal, 2002, 72, 504-509.

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE