簡易檢索 / 詳目顯示

研究生: 吳佳盈
Jia-Ying Wu
論文名稱: 探討出流控制置換式通風
A study on extraction mechanical displacement ventilation
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 田維欣
Wei-Hsin Tien
朱佳仁
none
趙修武
Shiu-Wu Chau
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 140
中文關鍵詞: 置換式通風抽取流量匯流模型熱分層
外文關鍵詞: displacement ventilation, extraction flow rate, the sink model, stratification
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討出流控制置換式通風對於流場的影響, 並和入流控制置
    換式通風作比較。研究工作以縮尺壓克力模型進行鹽浴實驗, 在縮尺壓克力
    模型中間放置隔板, 形成兩個相同截面積的相連房間。實驗組別根據中間隔
    板開口面積大小分為Ex(I) 和Ex(II) 兩系列, Ex(I) 中間隔板開口面積
    為 cm2, Ex(II) 中間隔板開口面積為51 cm2, 又兩實驗系列依抽取流量,
    Qex = 1、2、3和4 LPM, 可再分為四組實驗。浮力源房間頂部供應固定
    流量之鹽水, 抽水裝置則設置在底部; 非浮力源房間頂部有一開口使清水自
    然流入。實驗結果顯示, 抽取流量增加, 會使點熱源和交界面高度的距離增
    加, 密度層的密度值減少。Ex(I) 因中間隔板開口面積較小, 入流動量較大,
    因此在界面有較顯著的擾動; Ex(II) 中間隔板開口面積較大, 入流動量較
    小, 所以分層較為穩定。比較出流控制置換式通風和入流控制置換式通風流
    場的結果顯示, 入流控制置換式通風的密度層在水平方向分布較均一, 光度
    值為0.5、0.6、0.8的輪廓線呈現水平分布, 其中等光線在Lambert-Beer
    Law 上為濃度表現, 入流控制置換式通風在相同水平高度擷取的光度值也
    呈水平分布; 出流控制置換式通風受匯流作用影響, 匯流影響半徑和在匯流
    影響半徑上之速度隨抽取流量而增加, 使得匯流口跟遠離匯流口位置的光
    度差越來越顯著, 造成密度層流體在水平方向有顯著的梯度, 等光線為0.5、
    0.6、0.8在接近匯流口時呈現垂直分布。當距離出口位置越遠, 在相同高度
    水平擷取範圍的光度值越小, 密度值越大。


    The purpose of this research is to study the extraction mechani-
    cal displacement ventilation and investigate the effects of the supply
    source and the extraction sink on mechanical displacement ventila-
    tion. The salt-bath technique is employed to conduct the experi-
    ments by using the acrylic reduced-scale model. A partition with an
    opening was placed in the middle of the acrylic reduced-scale model
    to divide the model into two individual chambers. According to
    the partition opening area, the experimental are categorized as two
    series, Ex(I) and Ex(II). The partition opening area of Ex(I) and
    Ex(II) is and 51 cm2 respectively. Each series includes four differ-
    ent extraction flow rate, Qex = 1,2,3 and 4 LPM. The density plume
    as a buoyancy source is placed on the top of the forced room and
    extraction device is installed on the bottom of the forced room. The
    environmental fluid flow throw in the opening on the top of the un-
    forced room. Experimental results show that as the extraction flow
    rate increases, the distance from the plume source to the interface
    height increases; and the density of the buoyancy layer decreases.
    The stratification stability highly depends on the inflow momentum.
    The smaller partition opening area induces the larger inflow momen-
    tum, such as Ex(I) series of experiments. The mixed layer of Ex(I)
    is more noticeable than that of Ex(II) for a give extraction flow rate.
    Comparisons between extraction mechanical displacement ventila-
    tion and supply mechanical displacement ventilation show that the
    intensity contour of the supply mechanical displacement ventilation
    is almost horizontal and that means the intensity is the same at the same level. The influence of sink on extraction mechanical dis-
    placement ventilation is apparent. When the extraction flow rate
    increases, the sink effect radius, rex, and the sink velocity at the sink
    effect radius, Vs(rex), increases. It causes the intensity difference be-
    tween the sink outlet and the distance away from it at the same level
    become sigificant. The intensity contour near the sink outlet has a
    vertical distribution. As the distance away from the outlet increases,
    the intensity at the same level decreases, i.e. the density increases.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 自然通風型態. . . . . . . . . . . . . . . . . . . 2 1.2.2 機械通風型態. . . . . . . . . . . . . . . . . . . 4 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . 6 2 理論分析模型. . . . . . . . . . . . . . . . . . . . . . . . .9 2.1 點熱源模型. . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 點熱升流理論. . . . . . . . . . . . . . . . . . . 9 2.1.2 點熱源原點位置的修正. . . . . . . . . . . . . . 11 2.2 置換式通風模型. . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 單一房間置換式通風模型. . . . . . . . . . . . . 12 2.2.2 兩相連房間之拉式置換式通風模型. . . . . . . . 14 2.2.3 兩相連房間之控制置換式通風模型. . . . . . . . 15 2.3 匯流理論模型(The sink model) . . . . . . . . . . . . . 15 2.4 噴流理論模型. . . . . . . . . . . . . . . . . . . . . . . 16 3 實驗設置與方法. . . . . . . . . . . . . . . . . . . . . . . 17 3.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 實驗模型配置. . . . . . . . . . . . . . . . . . . 17 3.1.2 光度影像擷取系統. . . . . . . . . . . . . . . . 18 3.2 實驗步驟. . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 資料處理與分析方法. . . . . . . . . . . . . . . . . . . 19 3.3.1 影像處理. . . . . . . . . . . . . . . . . . . . . 19 3.3.2 穩態時間的選取. . . . . . . . . . . . . . . . . 20 3.3.3 密度分析. . . . . . . . . . . . . . . . . . . . . 20 3.3.4 交界面高度. . . . . . . . . . . . . . . . . . . . 21 3.3.5 混合層厚度. . . . . . . . . . . . . . . . . . . . 22 3.4 實驗組別與參數探討. . . . . . . . . . . . . . . . . . . 23 3.4.1 入流控制置換式通風. . . . . . . . . . . . . . . 23 3.4.2 出流控制置換式通風. . . . . . . . . . . . . . . 23 3.4.3 參數探討. . . . . . . . . . . . . . . . . . . . . 24 4 實驗結果與討論. . . . . . . . . . . . . . . . . . . . .27 4.1 入流控制置換式通風實驗結果. . . . . . . . . . . . . . . 27 4.2 出流控制置換式通風實驗結果. . . . . . . . . . . . . . . 27 4.2.1 Ex(I) 實驗結果. . . . . . . . . . . . . . . . . . 28 4.2.2 Ex(II) 實驗結果. . . . . . . . . . . . . . . . . 29 4.3 結果分析與討論. . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 出流控制置換式通風流場比較. . . . . . . . . . 30 4.3.2 比較入流控制置換式通風和出流控制置換式通風. . . . . . .30 4.3.3 匯流速度對流場的影響. . . . . . . . . . . . . . 31 4.3.4 水平擷取範圍之光度值變化. . . . . . . . . . . . 32 4.3.5 探討混合層厚度. . . . . . . . . . . . . . . . . 33 4.3.6 比較匯流和噴流的影響範圍. . . . . . . . . . . . 34 5 結論與建議. . . . . . . . . . . . . . . . . . . . . . . 37 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    [1] Linden, P. F. (1999), The fluid mechanics of natural ventilation.
    Annual Review of Fluid Mechanics, 31, 201-238.
    [2] Tovar, R., Campo Garrido, C. A. C., Linden, P. F. and Thomas,
    L. P. (2009), Buoyancy-driven flow in two interconnected rooms:
    effects of the exterior vent location and size. Journal of Solar
    Energy Engineering, 131, 0210051-0210056.
    [3] Fitzgerald, S. D. and Woods, A. W. (2003), Natural ventilation
    of a room with vents at multiple levels. Building and Environ-
    ment, 39, 505-521.
    [4] Lin, Y. J. P. and Huang, J. J. (2011), Buoyancy-driven flow
    between two series-connected chambers in an ambient environ-
    ment. The 12th International Conference on Air Distribution in
    Rooms.
    [5] Sandberg, M. (1981), What is Ventilation Efficiency? Building
    and Environment, 16, 123-135.
    [6] Holford, J. M. and Hunt, G. R. (2003), Fundamental atrium
    design for natural ventilation. Building and Environment, 38,
    409-426.
    [7] Lin, Y. J. P. and Lin, C. L. (2014), A study on stratification in
    a space using displacement ventilation. International Journal of
    Heat and Mass Transfer, 73, 67-75.
    [8] Yang, D., Hu, L. H., Huo, R., Jiang, Y. Q., Liu, S. and Tang,
    F. (2010), Experimental study on buoyant flow stratification
    induced by a fire in a horizontal channel. Applied Thermal En-
    gineering, 30, 872-878.
    [9] Awad, A. S., Badran, O. O., Hold, A. E. and Calay, R. K. (2008),
    The effect of ventilation aperture location of input airflow rates
    on the stratified flow. Energy Conversion and Management, 49,
    3253-3258.
    [10] Kong, Q. and Yu, B. (2008), Numerical study on temperature
    stratification in a room with underfloor air distribution system.
    Energy and Buildings, 40, 495-502.
    [11] Hunt, G. R. and Kaye, N. G. (2001), Virtual origin for lazy
    turbulent plumes. J. Fluid Mech, 435, 377-396.
    [12] 蔡宗翰, 2011, 兩個串連房間浮力驅動通風之研究。台灣科技大學碩士
    論文。
    [13] 林志龍, 2012, 探討置換式通風對於室內環境流場分層的影響。台灣科
    技大學碩士論文。
    [14] Munson, B. R., Young, D. F., Okiishi, T. H. and Huebsch, W.
    W. (2010), Fundamentals of fluid mechanics. 6th edition, John
    Wiley and Sons, ISBN 978-0-470-39881-4.
    [15] 余育汶, 2014, 探討入口擋板孔隙率對排空房間的影響。台灣科技大學
    碩士論文。
    [16] Auban, O., Lemoine, F., Vallette, P. and Fontaine, J. R. (2001),
    Simulation by solutal convection of a thermal plume in a con-
    fined stratified environment: application to displacement ven-
    tilation. International Journal of Heat and Mass Transfer, 24,
    4679-4691.

    QR CODE