簡易檢索 / 詳目顯示

研究生: 周子鈞
Tzu-Chun Chou
論文名稱: 不同燒結溫度和不同比例WS2奈米管強化相使用粉末冶金方法製備機械性質強化的WS2/鎂合金奈米複合材料
Effects of sintering temperature and reinforced WS2 nanotubes content on mechanical properties of Mg alloy metal matrix composites fabricated by powder metallurgy
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 陳元方
Yuan-Fang Chen
羅裕龍
Yu-Lung Lo
徐茂濱
Mau-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 128
中文關鍵詞: 鎂基複合材料WS2奈米管冷均壓成型粉末冶金高能球磨等徑轉角擠製
外文關鍵詞: Magnesium composite, WS2 nanotube, Cold isostatic pressing, Powder metallurgy, Ball milling, Equal channel angular pressing
相關次數: 點閱:381下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究嘗試利用粉末冶金方式製造AZ61/WS2奈米管複合材料,並探討WS2奈米管添加比例與燒結溫度等參數對複合材料機械性質之影響。
本研究使用之金屬粉末係以球磨方式製作AZ61粉末,並探討球磨時間對AZ61粉末粒徑大小、粒徑分布與粉末外觀之影響。加入不同比例WS2奈米管得到混合粉末後透過冷均壓方式壓製成生坯,而後以真空燒結爐在不同溫度下進行燒結 (350℃、400℃、450℃)。添加WS2奈米管能有效降低材料內孔隙率,並大幅細化晶粒,有助於硬度提升,另一方面WS2奈米管在基材中可以形成橋接機制 (Bridging Mechanism) 可以有效的分散負載而提高機械性質。對於AZ61/WS2奈米管複合材料而言燒結溫度400℃已足夠使粉末顆粒間達到緻密化,而450℃會使晶粒過度的成長反而降低材料的機械性質,另一方面,添加WS2奈米管在450℃燒結後會產生脆性鎢金屬析出物,降低材料在延展性。經過ECAP之試片透過劇烈塑性變形可以再次細化晶粒與填補孔洞造成機械性質的提升。


Since WS2 nanotubes have been shown to improve material strength and ductility in previous studies, this study attempted to manufacture AZ61/WS2 nanotube composites by powder metallurgy. The effects of the addition percentage of WS2 nanotubes and sintering temperature on the mechanical properties of the composites were investigated.
The AZ61 powder used in this study was made by ball milling, and the effect of ball milling time on the particle size, particle size distribution and powder appearance of AZ61 powder was investigated. The mixed powder was pressed into green bodies by cold isostatic pressing (CIP), and then sintered at different temperatures (350℃, 400℃, and450℃) by vacuum sintering method.
The results showed that the addition of WS2 nanotubes could effectively reduce the porosity of the material and greatly refine the grains, which contributed to the improvement of hardness. On the other hand, WS2 nanotubes was able to effectively disperse the load and improved mechanical properties due to forming bridging mechanism. For this AZ61/WS2 nanotube composite, 400℃ sintering was enough to densify the powder, while 450℃ sintering would cause excessive growth of the grain and reduce the mechanical properties of the material. On the other hand, WS2 nanotubes tended to be decomposed into brittle tungsten metal precipitates after sintering at 450℃. Equal channel angular pressing (ECAP) was able to refine the grain and remove the pores to improve the mechanical properties.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 WS2奈米管合成機制 3 1.2.2 應用粉末冶金技術製造金屬複合材料之相關文獻 8 1.2.3 添加強化相的前置加工對強化相與金屬基材間結合性的影響 15 1.2.4 添加強化相對於金屬複合材料機械性質之影響 17 1.2.5 本實驗室鎂合金複材製造方法 20 1.3 文獻整理心得 22 1.4 研究動機與目的 24 第二章 研究理論基礎 25 2.1 金屬基複合材料性質 25 2.1.1 以強化相分類複合材料 25 2.1.2 以合成方式分類複合材料 26 2.2 奈米材料 26 2.2.1 奈米顆粒的吸附性 26 2.2.2 奈米顆粒的分散與聚集 27 2.3 鎂合金與基本性質 28 2.3.1 鎂合金命名規則 28 2.3.2 鎂合金中添加不同元素所造成的效果整理 28 2.4 金屬材料強化機制 30 2.4.1 晶粒細化 30 2.4.2 Orowan強化與散佈強化 30 2.4.3 析出強化 31 2.5 粉末冶金 31 2.5.1 冷均壓 31 2.5.2 燒結 32 2.5.3 燒結驅動力 32 2.5.4 燒結機制 33 2.5.5 緻密化 34 2.6 顯微拉曼散射光譜 36 第三章 實驗方法與步驟 37 3.1 實驗流程 37 3.2 實驗材料 40 3.3 實驗設備 42 3.3.1 行星式球磨機 42 3.3.2 濕式冷均壓機 43 3.3.3 靜水力學電子天平 44 3.3.4 真空燒結爐 45 3.3.5 等徑轉角擠製機 (Equal Channel Angular Pressing, ECAP) 46 3.3.6 動態拉伸試驗機 47 3.3.7 顯微拉曼光譜儀 49 3.3.8 濕式自動研磨機/拋光機 50 3.3.9 維克式硬度機 52 3.3.10 光學顯微鏡 53 3.3.11 SEM掃描式電子顯微鏡 54 3.3.12 雷射粒徑分析儀 55 3.4 鎂基複合材料製備 56 3.5 粉末冶金坯體規劃 58 3.6 拉伸試片規劃 59 第四章 結果與討論 60 4.1 粉末粒徑分析結果 60 4.2 強化相添加比例對AZ61鎂基複合材料機械性質之影響 68 4.2.1 添加不同比例WS2奈米管對真空燒結AZ61密度之影響 68 4.2.2 微觀組織分析分析 71 4.2.3 EDS分析 74 4.2.4 硬度試驗 79 4.2.5 拉伸試驗 82 4.3 不同燒結溫度拉曼散射分析結果 86 4.3.1 微觀影像分析 86 4.3.2 拉曼光譜分析結果 91 4.3.3 拉伸試驗 93 4.4 添加WS2奈米管對二次加工強化鎂合金能力的影響 96 4.4.1 拉伸試驗 96 4.5 實驗結果之多重品質個性指標最佳化製成參數分析 99 4.6 與先前文獻比較 103 第五章 結論 104 AZ61粉末製作 104 AZ61基WS2奈米管複合材料 104 未來展望 106 參考文獻 107

[1] Hou, L., Wu, R., Wang, X., Zhang, J., Zhang, M., Dong, A., & Sun, B. (2017). Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites. Journal of alloys and Compounds, 695, 2820-2826.
[2] Verissimo, N. C., Freitas, E. S., Cheung, N., Garcia, A., & Osório, W. R. (2017). The effects of Zn segregation and microstructure length scale on the corrosion behavior of a directionally solidified Mg-25 wt.% Zn alloy. Journal of alloys and Compounds, 723, 649-660.
[3] Ng, S. M., Wong, H. F., Wong, W. C., Tan, C. K., Choi, S. Y., Mak, C. L., . . . Leung, C. W. (2016). WS2 nanotube formation by sulphurization: Effect of precursor tungsten film thickness and stress. Materials Chemistry and Physics, 181, 352-358.
[4] 林政信, AZ61 鎂基合金與複材之製程與破壞韌性分析, 國立中山大學材料科學研究所碩士論文, 2005
[5] Zak, A., Sallacan-Ecker, L., Margolin, A., Feldman, Y., Popovitz-Biro, R., Albu-Yaron, A., . . . Tenne, R. (2010). Scaling up of the WS2 nanotubes synthesis. Fullerenes, Nanotubes, and Carbon Nanostructures, 19(1-2), 18-26.
[6] T Tenne, R. (2006). Inorganic nanotubes and fullerene-like nanoparticles. Journal of materials research, 21(11), 2726-2743.
[7] Rothschild, A., Sloan, J., & Tenne, R. (2000). Growth of WS2 nanotubes phases. Journal of the American chemical Society, 122(21), 5169-5179.
[8] Han, G., Shen, J., Ye, X., Chen, B., Imai, H., Kondoh, K., & Du, W. (2016). The influence of CNTs on the microstructure and ductility of CNT/Mg composites. Materials Letters, 181, 300-304.
[9] Suárez, M., Fernández-Camacho, A., Menéndez, J. L., & Torrecillas, R. (2013). Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials: InTech.
[10] Rashad, M., Pan, F., Hu, H., Asif, M., Hussain, S., & She, J. (2015). Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering: A, 630, 36-44.
[11] Fukuda, H., Kondoh, K., Umeda, J., & Fugetsu, B. (2011). Interfacial analysis between Mg matrix and carbon nanotubes in Mg–6 wt.% Al alloy matrix composites reinforced with carbon nanotubes. Composites Science and Technology, 71(5), 705-709.
[12] Rahmany-Gorji, R., Alizadeh, A., & Jafari, H. (2016). Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Materials Science and Engineering: A, 674, 413-418.
[13] 謝孟霖, WS2無機奈米管合成與其電性的研究” 國立臺灣科技大學機械工程系碩士學位論文, 2017
[14] 黃政揚, WS2無稽奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究 2015
[15] 康程為, WS2無機奈米材料製作與不同強化相對鋁基複合材料的機械性質及微觀組織影響之研究 2017
[16] 蔡孟樹, 變形雙晶之生成與晶粒尺寸之關係, 國立中山大學材料科學研究所碩士論, 2012
[17] Sheppard, T. (2013). Extrusion of aluminium alloys: Springer Science & Business Media.
[18] Huang, S.-J., Ho, C.-H., Feldman, Y., & Tenne, R. (2016). Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes. Journal of alloys and Compounds, 654, 15-22.
[19] Manchado, M. L., Valentini, L., Biagiotti, J., & Kenny, J. (2005). Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 43(7), 1499-1505.
[20] Díez-Pascual, A. M., & Naffakh, M. (2013). Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature. Materials Chemistry and Physics, 141(2-3), 979-989.
[21] Esawi, A., Morsi, K., Sayed, A., Taher, M., & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology, 70(16), 2237-2241.
[22] 許詠盛, 氮化銦鎵/氮化鎵奈米線之光學特性及能隙調變之研究, 國立交通大學電子物理研究所碩士論文, 2011
[23] 劉彥辰, AM60/Al¬2O3”鎂基複合材料擠型管之機械性質與微觀組織研究, 國立中正大學機械工程學系碩士論文, 2012
[24] 呂崇瑋, 熱均壓製程對純鉻靶材微結構與機械性質影響之研究” , 國立台北科技大學材料科學與工程研究所碩士學位論文, 2010
[25] Ferkel, H., & Mordike, B. (2001). Magnesium strengthened by SiC nanoparticles. Materials Science and Engineering: A, 298(1-2), 193-199.
[26] Shimizu, Y., Miki, S., Soga, T., Itoh, I., Todoroki, H., Hosono, T., . . . Endo, M. (2008). Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scripta materialia, 58(4), 267-270.
[27] EDMONTON, A. (1998). Particle packing, compaction and sintering in powder metallurgy. University of Alberta.
[28] Akinwekomi, A. D., Law, W.-C., Tang, C.-Y., Chen, L., & Tsui, C.-P. (2016). Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Composites Part B: Engineering, 93, 302-309.
[29] Reddy, C. S., Zak, A., & Zussman, E. (2011). WS 2 nanotubes embedded in PMMA nanofibers as energy absorptive material. Journal of Materials Chemistry, 21(40), 16086-16093.
[30] Yoshida, M., Misumi, A., Oshitani, J., Gotoh, K., Shimosaka, A., & Shirakawa, Y. (2017). Effects of main particle diameter on improving particle flowability for compressed packing fraction in a smaller particle admixing system. Advanced Powder Technology, 28(10), 2542-2548.
[31] Zheng, D., Wu, Y.-p., Li, Z.-y., & Cai, Z.-b. (2017). Tribological properties of WS 2/graphene nanocomposites as lubricating oil additives. RSC Advances, 7(23), 14060-14068.
[32] Zhang, L., Tu, J., Wu, H., & Yang, Y. (2007). WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil. Materials Science and Engineering: A, 454, 487-491.
[33] Hu, J., Bultman, J., & Zabinski, J. (2004). Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribology Letters, 17(3), 543-546.
[34] 黃友聖, AZ61/SiCp 鎂基複合材料擠型製程及其擠型管之機械性質研究, 國立中正大學工學院機械工程學系碩士論文, 2011.
[35] Uematsu, Y., Tokaji, K., & Matsumoto, M. (2009). Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Materials Science and Engineering: A, 517(1-2), 138-145.
[36] 黃建忠, 強化相粒徑對 AZ61/SiCp 鎂基複合材料鑄錠及擠型材之機械性質影響的研究, 國立台灣科技大學機械工程學系碩士論文, 2013
[37] Deng, K., Wang, C., Shi, J., Wu, Y., & Wu, K. (2012). Microstructure evolution mechanism of micron particle reinforced magnesium matrix composite at room temperature. Materials Chemistry and Physics, 134(2-3), 581-584.
[38] Qiu, D., Zhang, M.-X., & Kelly, P. M. (2009). Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg–10 wt.% Y alloy. Scripta materialia, 61(3), 312-315.
[39] Tremel, W. (1999). Inorganic nanotubes. Angewandte Chemie International Edition, 38(15), 2175-2179.
[40] Wang, F., Kinloch, I. A., Wolverson, D., Tenne, R., Zak, A., O’Connell, E., Young, R. J. (2016). Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2D Materials, 4(1), 015007.
[41] Sitdikov, O., Sakai, T., Avtokratova, E., Kaibyshev, R., Kimura, Y., & Tsuzaki, K. (2007). Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP conditions. Materials Science and Engineering: A, 444(1-2), 18-30.
[42] 吳懿璋, 強化項粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究, 國立台灣科技大學機械工程學系碩士論文, 2014

QR CODE