簡易檢索 / 詳目顯示

研究生: 李安湘
Lee-an xiang
論文名稱: Dendrimer Stabilized Single Walled Carbon Nanohorns as Anticancer Drug Carrier
Dendrimer Stabilized Single Walled Carbon Nanohorns as Anticancer Drug Carrier
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
吳嘉文
Chia-Wen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 82
中文關鍵詞: 單壁奈米碳角藥物傳遞藥物釋放抗癌藥物
外文關鍵詞: single walled carbon nanohorns, drug delivery, dendrimers, anticancer
相關次數: 點閱:354下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

單壁奈米碳角(SWNHs)是具嬌琴紗狀外形結構的石墨烯片,預期在藥物傳遞上有高發展性。因為單壁奈米碳角的表面改質在藥物傳遞應用中是一種重要的研究方向。此實驗中,使用酸處理作為表面改質的方法。由實驗結果可得知氧化單壁奈米碳角的最佳反應時間為2小時的酸處理反應,因為它能產生足夠的羧基及對石墨烯片有較少的破壞。因此,酸處理後的單壁奈米碳角比未經酸處理的單壁奈米碳角具有較高的分散性於水及有機溶劑中。此實驗是以單壁奈米碳角在生物應用中作為藥物遞送系統。單壁奈米碳角與葉酸(FA)結合產生分子靶應用於特定的細胞葉酸受體。此外,我們使用兩種不同官能基的樹枝狀高分子(DenOH及DenNH2)結合於單壁奈米碳角,由實驗結果可得單壁奈米碳角經由DenOH或DenNH2外層保護均可解決單壁奈米碳角與葉酸產生分散性較差的問題。而最後我們選用DenOH和單壁奈米碳角與葉酸結合,因為SWNHs-DenOH在水中相較於SWNHs-DenNH2具有較好的分散性。在此實驗中,我們選用五種抗癌藥物(替莫唑胺,酞菁,阿黴素,喜樹鹼和原卟啉),因為這五種抗癌藥物對於腫瘤具有不同的治療方法和優點。在此實驗將討論SWNHs以及SWNHs-DenOH-FA對於藥物承載的影響。在藥物乘載上SWNHs可以通過π-π作用、氫鍵與藥物連結以及將藥物載入SWNHs內部的空間,由實驗可知對於藥物上的承載能力,SWNHs-DenOH-FA比只有SWNHs更高。因為DenOH與藥物產生更多水和作用,所以會產生較佳的承載效果。而由藥物釋放曲線顯示出對於不同酸鹼度中會有不同的釋放特性,尤其在酸性環境下釋放的藥物量或會高於鹼性環境,然而SWNHs-DenOH-FA的藥物釋放量少於SWNHs,因為隨著樹枝狀大分子的相互作用與藥物產生較多的氫鍵以及產生較多的空間阻礙造成藥物較難釋放出。


Single walled carbon nanohorns (SWNHs) is a horn-shaped sheath aggregate of graphene sheets and is expected high potential of applications including drug delivery system. Then surface modification of SWNHs is an important research direction for the adequate application. In this study, the oxidation of SWNHs was performed by acid-treatment, where 2 h reaction was preferable, because it produces enough carboxyl groups and less defect of graphene sheet. Thus acid-treated SWNHs is more dispersible in water than commercial SWNHs. The strategy in this study is biological application of SWNHs as drug delivery system. SWNHs were conjugated with folic acid (FA) molecules for targeting specific cell with folate receptors. Moreover, SWNHs were protected by poly(amido amine) (PAMAM) dendrimer for increasing poor dispersibility of SWNHs-FA. The OH-terminated PAMAM dendrimer (DenOH) is preferably used to be chemically immobilized on SWNHs than NH2-terminated Dendrimer (DenNH2), since SWNHs-DenOH shows higher dispersibility in water than SWNHs-DenNH2. Five drugs (temozolomide, phthalocyanine, doxorubicin, camptothecin and protoporphyrin) were selected as anticancer drugs in this study, because these have different therapeutic advantages and behaviors for the tumors. The controlled loading of drug on SWNHs and SWNHs-DenOH-FA carriers was investigated. The loading capacity of drug on SWNHs-DenOH-FA was always higher than on SWNHs, since DenOH gives additional hydrogen interaction with drug, while the loading of drug on SWNHs can occur via π-π stacking, hydrogen bonding and traping inside interior space. Release profile shows strong pH dependence, and drugs on SWNHs-DenOH-FA were less released than on SWNHs, because the interaction with dendrimer keeps drugs on carrier and DenOH-FA gives steric hindrance for removal of drugs.

Abstract i 摘要 ii Acknowledgement iii Table of contents iv List of Figure vi List of Table viii Chapter 1 introduction 1 1-1 Single walled carbon nanohorns (SWNHs) 1 1-2 Poly (amido amine ) (PAMAM) dendrimers (DenNH2,DenOH) 3 1-3 Drug delivery 5 Chapter 2 Research Methodology 6 2-1 Research design 6 2-2 Materials 8 2-3 Experimental Procedures 9 2-3-1 Modification of carbon nanohorns 9 2-3-1-1 Acid-treatment and impurity removal of SWNHs 9 2-3-1-2 Chemical synthesis of hybrids of SWNHs-DenOH 10 2-3-1-3 Chemical synthesis of SWNHs-DenOH-FA 11 2-3-1-4 Chemical synthesis of hybrids of SWNHs-DenNH2 12 2-3-2 Drug loading on SWNHs and SWNHs-DenOH-FA 13 2-3-2-1 Loading of Temozolomide 13 2-3-2-2 Loading of Phthalocyanine , Doxorubicin , Camptothecin and Protoporphyrin 13 2-3-3 Drug releasing from SWNHs and SWNHs-DenOH-FA 14 2-3-3-1 Releasing in water 14 2-3-3-2 Releasing in organic solvent 14 2- 4 Instruments 15 Chapter 3 Results and Discussion 16 3-1 Effect of acid-treatment on SWNHs 16 3-1-1 Function group 16 3-1-2 Impurity removal 18 3-1-3 Defect of Graphene sheet 22 3-1-4 Morphology 24 3-1-5 conclusion 26 3-2 Dispersibility of SWNHs and it hybrids 27 3-2-1 SWNHs and SWNHs-FA 27 3-2-2 SWNHs-DenNH2 and SWNHs-DenOH 28 3-2-3 SWNHs-FA and SWNHs-DenOH-FA 33 3-2-4 conclusion 34 3-3 Characterization of SWNHs- DenOH-FA 35 3-3-1 Function group 35 3-3-2 Optical Spectroscopy 37 3-3-3 Morphology 38 3-3-4 conclusion 39 3-4 Drug loading on SWNHs or SWNHs-DenOH-FA 40 3-4-1 Loading capacity of drug 40 3-4-1-1 Temozolomide 40 3-4-1-2 Phthalocyanine 43 3-4-1-3 Doxorubicin 45 3-4-1-4 Camptothecin 48 3-4-1-5 Protoporphyrin 50 3-4-2 Comparison between SWNHs and SWNHs-DeOH-FA for drug loading 53 3-5 Drug releasing from SWNHs or SWNHs-DenOH-FA 56 3-5-1 Releasing of drug 56 3-5-1-1 Temozolomide 56 3-5-1-2 Doxourbicin 58 3-5-1-3 Phthalocyanine, Camptothecin and Protoporphyrin 60 3-5-2 Comparison of drug releasing from SWNHs and SWNHs-DenOH-FA 61 Chapter 4 General Conclusion 64 Reference 67

1. S.Iijima, T.I., single shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603-605.
2. Cheol-Min Yang, H.N., Katsuyuki Murata, Masako Yudasaka, Ayako Hashimoto, Sumio Ijijma, and Katsumi Kaneko, hight ultramicroporous SWNH assemblies. Advanced Materials, 2005. 7: p. 866-870.
3. Parichat Thipayang, K.S., Chantamanee Poonjarernsilp, Tawatchai Charinpanitkul, FABRICATION OF COPPER SINGLE WALLED CARBON NANOHORN HYBRID MATERIAL BY MICROWAVE IRRADIATION. 2013.
4. Shigenori Utsumi, H.H., Yoshiyuki Hattori, Hirofumi Kanoh, Kunimitsu Takahashi, Hideki Sakai, Masahiko Abe, Masako Yudasaka, Sumio iijima, and Katsumi Kaneko, Direct Evidence on C-C Single Bonding in Single-Wall Carbon Nanohorn Aggregates. Journal of Physical Chemistry C, 2007. 111(15): p. 5572-5575.
5. Cheol-Min Yang, Y.-J.K., Masako Yudasaka, Sumio Ijijma, and Katsumi Kaneko, Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. J. AM. CHEM. SOC., 2006. 129: p. 20-21.
6. M. Yudasaka, F.K., K. Takahashi, R. Yamada, N. Sensui, T. Ichihashi, and and S. Iijima, Formation of Single Wall Carbon Nanotubes: Comparison of CO2 Laser Ablation and Nd:YAG laser ablation. The Journal of Physical Chemistry B, 1999. 103: p. 3576-3587.
7. Zhang, M., et al., Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci U S A, 2008. 105(39): p. 14773-8.
8. Miyawaki, J., et al., Biodistribution and Ultrastructural Localization of Single-Walled Carbon Nanohorns Determined In Vivo with Embedded Gd2O3 Labels. Acs Nano, 2009. 3(6): p. 1399-1406.
9. Miyawaki, J., et al., Toxicity of single-walled carbon nanohorns. Acs Nano, 2008. 2(2): p. 213-226.
10. Ajima, K., et al., Enhancement of In Vivo Anticancer Effects of Cisplatin by Incorporation Inside Single-Wall Carbon Nanohorns. Acs Nano, 2008. 2(10): p. 2057-2064.
11. Shu, C., et al., A Facile High-speed Vibration Milling Method to Water-disperse Single-walled Carbon Nanohorns. Chemistry of Materials, 2010. 22(2): p. 347-351.
12. K. Murata, A.H., M. Yudasaka1,3, D. Kasuya, K. Kaneko andS. Iijima, The Use of Charge Transfer to Enhance the Methane-Storage Capacity of Single-Walled, Nanostructured Carbon. Advanced Materials, 2004. 16: p. 1520-1522.
13. Murakami T1, A.K., Miyawaki J, Yudasaka M, Iijima S, Shiba K., Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Molecular Pharmaceutics, 2004. 1: p. 399-405.
14. Kase D, K.J.r., Yudasaka M, Evans JS, Iijima S, Shiba K., Affinity Selection of Peptide Phage Libraries. Langmuir, 2004. 20(20): p. 8939-41.
15. Kumiko Ajima, M.Y., Tatsuya Murakami,Alan Maigne’,Kiyotaka Shiba, and Sumio Iijima, Carbon Nanohorns as Anticancer Drug Carriers. Molecular Pharmaceutics, 2005. 2(6): p. 475-480.
16. Miyawaki, J., et al., In Vivo Magnetic Resonance Imaging of Single-Walled Carbon Nanohorns by Labeling with Magnetite Nanoparticles. Advanced Materials, 2006. 18(8): p. 1010-1014.
17. Suresh K. Bhatia, A.L.M., Optimum Conditions for Adsorptive Storage. Langmuir, 2005. 4: p. 1688-1700.
18. Zhang, M., et al., Isolating single-wall carbon nanohorns as small aggregates through a dispersion method. Journal of Physical Chemistry B, 2005. 109(47): p. 22201-22204.
19. Zhang, J., et al., Carbon Nanohorn Sensitized Electrochemical Immunosensor for Rapid Detection of Microcystin-LR. Analytical Chemistry, 2010. 82(3): p. 1117-1122.
20. Kosaka, M., et al., Single-Wall Carbon Nanohorns Supporting Pt Catalyst in Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2009. 113(20): p. 8660-8667.
21. Cioffi, C., et al., Functionalisation of carbon nanohorns. Chem Commun (Camb), 2006(20): p. 2129-31.
22. Tagmatarchis, N., et al., Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small, 2006. 2(4): p. 490-4.
23. Cioffi, C., et al., Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. Journal of the American Chemical Society, 2007. 129(13): p. 3938-3945.
24. Tomalia, D.A., birth of a new macromolecular architrct. Progress in Polymer Science, 2004. 30: p. 294-324.
25. Ciolkowski, M., et al., The influence of PAMAM-OH dendrimers on the activity of human erythrocytes ATPases. Biochim Biophys Acta, 2011. 1808(11): p. 2714-23.
26. Buhleier, E., W. Wehner, and F. VOGtle, "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis, 1978. 1978(02): p. 155-158.
27. D A Tomalia, H.B., J Dewald, M Hall, G Kallos, S Martin, J Roeck, J Ryder and P Smith, A New Class of Polymers Starburst-Dendritic Macromolecules. Polymer Journal, 1985. 17: p. 117-132.
28. Carlmark, A., et al., New methodologies in the construction of dendritic materials. Chem Soc Rev, 2009. 38(2): p. 352-62.
29. Mahesh L. Patil, M.Z., Oleh Taratula, Olga B. Tamara Minko, Internally Cationic Polyamidoamine PAMAM-OH Dendrimers for siRNA Delivery: Effect of the Degree of Quaternization and Cancer Targeting. Biomacromolecules, 2008. 10: p. 258-266.
30. Albertazzi, L., et al., In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm, 2013. 10(1): p. 249-60.
31. Menjoge, A.R., R.M. Kannan, and D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today, 2010. 15(5-6): p. 171-85.
32. Boas, U. and P.M. Heegaard, Dendrimers in drug research. Chem Soc Rev, 2004. 33(1): p. 43-63.
33. Zhao, Y., et al., Synthesis and photoluminescence study of di-dendron dendrimers derived from mono-Boc-protected ethylenediamine cores. Luminescence, 2011. 26(4): p. 264-70.
34. Jensen, L.B., et al., Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm, 2011. 416(2): p. 410-8.
35. Perumal, O.P., et al., The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials, 2008. 29(24-25): p. 3469-76.
36. Tomalia, D.A. and J.M.J. Frchet, Discovery of dendrimers and dendritic polymers: A brief historical perspective. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(16): p. 2719-2728.
37. Kanekiyo, Y., H. Tao, and B. Sellergren, Stimuli-Responsive Guest Binding and Releasing by Dendritic Polymer-Based Hydrogels. Polymer Journal, 2008. 40(8): p. 684-687.
38. Astruc, D. and F. Chardac, Dendritic catalysts and dendrimers in catalysis. Chemical Reviews, 2001. 101(9): p. 2991-3023.
39. Peng, X., Q. Pan, and G.L. Rempel, Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev, 2008. 37(8): p. 1619-28.
40. Calvert, A., et al., Carboplatin dosage: prospective evaluation of a simple formula based on renal function. Journal of Clinical Oncology, 1989. 7(11): p. 1748-1756.
41. Chithrani, B.D., et al., Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2009. 5(2): p. 118-127.
42. Desmond N. Carney1, J.B.M., and Timothy J. Kinsella, In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants. CANCER RESEARCH 1983. 43: p. 2806-2811.
43. Dorrt, P.E.K.a.R.T., Anticancer drug renal toxicity and elimination dosing guidelines for altered renal function. Cancer Treatment Reviews, 1995. 21(1): p. 33-64.
44. Geiger, S., et al., Anticancer therapy induced cardiotoxicity: review of the literature. Anti-cancer drugs, 2010. 21(6): p. 578-590.
45. Helen M. Pettersson1, A.P., Matilda Munksgaard Persson1, Jenny Karlsson1, Leif Johansson2, Maria C. Shoshan3 and Sven Pahlman1, Use of Arsenic Trioxide (As2O3 ) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 1997. 89: p. 3354-3360.
46. Jaracz, S., et al., Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem, 2005. 13(17): p. 5043-54.
47. Jing, Y., Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood, 2001. 97(1): p. 264-269.
48. Kouranos, V., et al., Chemotherapy-induced neutropenia in lung cancer patients: the role of antibiotic prophylaxis. Cancer Lett, 2011. 313(1): p. 9-14.
49. L.M. Mir, O. Tounekti1, S. Orlowski2, Bleomycin: Revival of an old drug. General Pharmacology: The Vascular System, 1996. 27(5): p. 745-748.
50. Abou-Jawde, R., et al., An overview of targeted treatments in cancer. Clinical Therapeutics, 2003. 25(8): p. 2121-2137.
51. Narang, A.S. and S. Varia, Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev, 2011. 63(8): p. 640-58.
52. Saad, M., O.B. Garbuzenko, and T. Minko, Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond), 2008. 3(6): p. 761-76.
53. Voortman, J. and G. Giaccone, Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report. BMC Cancer, 2006. 6: p. 129.
54. Na, H.B., I.C. Song, and T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials, 2009. 21(21): p. 2133-2148.
55. Calvo, P., et al., Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharmaceutical Research, 2001. 18(8): p. 1157-1166.
56. Irene Brigger, C.D., Patrick Couvreur Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002. 54(5): p. 631-651.
57. D. Depana, J.S., R.D.K. Misraa, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C, 2011. 112: p. 17554-17558.
58. Futami K1, T.M., Shimamoto A, Sugimoto M, Furuichi Y., Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biological & Pharmaceutical Bulletin, 2007. 30.
59. Berrada, M., et al., A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials, 2005. 26(14): p. 2115-20.
60. Christopher J. Mingone , S.A.G., Joseph L. Chow , Mansoor Ahmad , Nader G. Abraham , Michael S. Wolin, Protoporphyrin IX generation from δ-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. American Journal of Physiology 2006. 291: p. 1337-1344.
61. Ormond, A. and H. Freeman, Dye Sensitizers for Photodynamic Therapy. Materials, 2013. 6(3): p. 817-840.
62. Farrel L. Fort, P.G., MD, phototoxicity on tin protoporphyrin tin mesoporphyrin and tin diiododeterporphyrin. PEDIATRICS, 2007. 84: p. 1031-1037.
63. Leelaviwat, N., et al., Microwave-induced fabrication of copper nanoparticle/carbon nanotubes hybrid material. Current Applied Physics, 2012. 12(6): p. 1575-1579.
64. Ryota Yuge , M.Z., Mutsumi Tomonari , Tsutomu Yoshitake , Sumio Iijima and Masako Yudasaka Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano, 2008. 2: p. 1865-1870.
65. Pagona, G., et al., Cone-end functionalization of carbon nanohorns. Chemistry of Materials, 2006. 18(17): p. 3918-3920.
66. In-Yup Jeon1, D.W.C. and N.A.K.a.J.-B. Baek1, Functionalization of Carbon Nanotubes. Top Curr Chem, 2004. 245: p. 193-237.
67. Pradhan, B.K. and N.K. Sandle, Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999. 37(8): p. 1323-1332.
68. Kim, U.J., et al., Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American Chemical Society, 2005. 127(44): p. 15437-15445.
69. PAUL E, F.a.M.A.V., A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon, 1993. 41: p. 721-730.
70. Fan, J., et al., Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. Journal of Physical Chemistry B, 2006. 110(4): p. 1587-1591.
71. Ryota Yuge , M.Y., Jin Miyawaki ,Yoshimi Kubo ,Toshinari Ichihashi ,Hideto Imai ,Eiichi Nakamura , Hiroyuki Isobe , Hideki Yorimitsu ,and Sumio Iijima Controlling the incorporation and release of C60 in nanometer-scale hollow spaces inside single-wall carbon nanohorns. The Journal of Physical Chemistry B, 2005. 109: p. 17861-17867.
72. Li, N., et al., Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 2010. 48(5): p. 1580-1585.
73. Fan, J., et al., Micrometer-sized graphitic balls produced together with single-wall carbon nanohorns. Journal of Physical Chemistry B, 2005. 109(21): p. 10756-10759.
74. Ryota Yuge , M.Y., Jin Miyawaki ,Yoshimi Kubo ,Toshinari Ichihashi ,Hideto Imai ,Eiichi Nakamura , Hiroyuki Isobe , Hideki Yorimitsu and Sumio Iijima, Controlling the incorporation and release of C60 in nanometer-scale hollow spaces inside single-wall carbon nanohorns. The Journal of Physical Chemistry B, 2005. 109: p. 17861-17867.
75. a, S.I., et al., Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters, 1999. 309: p. 165-170.
76. Tuinstra, F. and J.L. Koenig, Raman spectrum of graphite. The Journal of Chemical Physics, 1970. 53(3): p. 1126-1130.
77. Pagona, G., N. Karousis, and N. Tagmatarchis, Aryl diazonium functionalization of carbon nanohorns. Carbon, 2008. 46(4): p. 604-610.
78. Zhang J1, L.J., Xu C, Ding L, Ju H., Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Analytical Chemistry, 2010. 82: p. 1117-1122.
79. Whitney, J.R., et al., Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg Med, 2011. 43(1): p. 43-51.
80. Konkena, B. and S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKaMeasurements. The Journal of Physical Chemistry Letters, 2012. 3(7): p. 867-872.
81. Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008. 3(2): p. 101-5.
82. Wang, X., H. Bai, and G. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc, 2011. 133(16): p. 6338-42.
83. N~gele, E., The zeta-potential of cement: Part III: The non-equilibrium double layer on cement. Cement and Concrete Research, 1987. 17: p. 573-580.
84. J. A. Manzanares, q.W.D.M., t S. Mafd,+*S and H. Reiss'J, Numerical Simulation of the Nonequilibrium Diffuse Double Layer in Ion-Exchange Membranes. The Journal of Physical Chemistry 1993. 97: p. 8524-8530.
85. Leisner, D. and T. Imae, Polyelectrolyte behavior of an interpolyelectrolyte complex formed in aqueous solution of a charged dendrimer and sodium poly(L-glutamate). Journal of Physical Chemistry B, 2003. 107(47): p. 13158-13167.
86. Chen, W., D.A. Tomalia, and J.L. Thomas, Unusual pH-dependent polarity changes in PAMAM dendrimers: Evidence for pH-responsive conformational changes. Macromolecules, 2000. 33(25): p. 9169-9172.
87. Rietveld, I.B., et al., Location of the outer shell and influence of pH on carboxylic acid-functionalized poly(propyleneimine) dendrimers. Macromolecules, 2001. 34(23): p. 8380-8383.
88. Endo, T., T. Yoshimura, and K. Esumi, Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer. J Colloid Interface Sci, 2005. 286(2): p. 602-9.
89. Maria-Cristina Popescu, D.F., Cornelia Vasile,C. Cruz,J. M. Rueff, and J.L.S. Mercedes Marcos, and Gh. Singurel, Characterization by fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. The Journal of Physical Chemistry B, 2006. 110: p. 14198-14211.
90. Abhay Asthana, A.S.C., Prakash Vamanrao Diwan, and Narendra Kumar Jain, Poly (amidoamine)(PAMAM) dendritic nanostructures for controlled sitespecific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 2004. 6: p. 536-542.
91. Sun, C., R. Sze, and M. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006. 78(3): p. 550-7.
92. Mohapatra, S., et al., Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology, 2007. 18(38): p. 385102.
93. Guldi, D.M., et al., Single-wall carbon nanotube-ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew Chem Int Ed Engl, 2003. 42(35): p. 4206-9.
94. Hideaki Itoh, K.N., and Yoshiki Chujo, Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. Journal of the American Chemical Society, 2003. 126: p. 3026-3027.

QR CODE