簡易檢索 / 詳目顯示

研究生: 祁家寧
Chia-Ning Chi
論文名稱: 相間轉移催化技術合成乙二醇二芐醚之動力學研究
Kinetics of Synthesis of Dibenzyl Glycol under Phase-Transfer Catalysis Conditions
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
謝育民
Yu-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 171
中文關鍵詞: 相間轉移觸媒動力學烷化反應乙二醇溴化苄
外文關鍵詞: phase transfer catalyst, kinetics, alkylation, ethylene glycol, benzyl bromide
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究藉由相間轉移觸媒(phase-transfer catalyst)之催化液-液相烷化反應,可在溫和條件下,將乙二醇(ethylene glycol)與溴化苄(benzyl bromide)合成為乙二醇二苄醚(1,2-bis(benzyloxy)ethane)。

      本實驗使用三頸圓底玻璃瓶為反應器,加入適量之反應物、去離子水、有機溶劑、氫氧化鉀和觸媒以進行反應,藉由改變各種反應參數,如攪拌速率、水量、有機溶劑量、觸媒量、有機溶劑之種類、相間轉移觸媒之種類、鹼濃度、鹼種類、反應物比例、反應溫度及超音波功率,進行反應動力學之探討,藉由高效能液相層析儀(HPLC)、氣相層析質譜分析儀(GC/MS)、核磁共振儀(NMR)和元素分析儀(EA)分析其結果,以找出最適反應條件。

      本實驗結果顯示(a)此反應為SN2取代反應(b)利用擬穩定狀態理論(pseudo steady-state hypothesis)與雙膜理論(two-film theory)可成功地推導出反應機制之擬一次數理模式(c)相間轉移觸媒技術可溫和且有效地加速反應,能夠避免在高溫時導致副反應之發生(d)活性觸媒之兩相質量傳送皆具有臨界值,顯示此反應系統為萃取反應機制,當攪拌速率高於臨界值時,為有機相化學反應控制(e)增加攪拌速率、反應溫度、觸媒用量與觸媒陽離子之親油性均可促進反應進行(f)使用部份因素實驗法可以找出在此合成反應中之交互作用項,包含攪拌速率-鹼量、攪拌速率-溫度與觸媒量-鹼量等三項,其原因與活性中間體在兩相間的分配、黏度、表面張力與水合數目有關。


      In this study, 1,2-bis(benzyloxy)ethane was synthesized by reacting benzyl bromide with ethylene glycol under phase transfer catalysis. In the experiment, the reactor was a 100 mL three-necked flask, added an appropriate amount of reactant, deionized water, organic solvents, potassium hydroxide and the catalyst for reaction. Detailed investigation was made for: effect of agitation speed, amount of water, organic solvents, catalysts, organic solvent types, phase transfer catalyst types, alkali concentration, alkali salt type, mole ratio of reactant, temperature and ultrasonic wave. The reaction kinetics by high performance liquid layer chromatography (HPLC), gas chromatography mass spectrometer (GC / MS), nuclear magnetic resonance (NMR) and elemental analysis (EA) to analyze this results to find the optimal reaction conditions.

      The results show that (a) The reaction type as an SN2 reaction. (b) The pseudo steady-state hypothesis and two-film theory are successfully applied to describe the reaction behaviors. (c) The reaction was effectively enhanced in the mild conditions via phase-transfer catalysis. The reaction via phase-transfer catalyst could avoid by-product was produce at higher temperature. (d) A threshold value of two-phase mass-transfer rate would exist in the phase transfer catalytic reactions. All reaction systems were identified as the extraction mechanism. The reaction was organic reaction controlled when the agitation speed was higher than the threshold value. (e) The reaction rate is increase with the increase in agitation speed, temperature, amount of catalyst and organophilicity of the active catalyst. (f) The significant binary interactions in affecting the reaction rate, agitation speed-amount of KOH , agitation speed-reaction temperature, and amount of PTC-amount of KOH, are found with using fractional factorial design method. The reasons for these interactions are : distribution and concentration of active catalyst, viscosity and surface tension of liquid, and hydration number of active catalyst.

    摘要...........................................................................I ABSTRACT......................................................................II 誌謝..........................................................................IV 目錄...........................................................................V 表目錄......................................................................VIII 圖目錄.........................................................................X 第一章 緒論...................................................................1  1.1 前言.............................................................................1  1.2 相間轉移催化技術之簡介...................................................1   1.2.1 相間轉移催化技術之發展...............................................1   1.2.2 相間轉移觸媒之發展與應用.............................................3   1.2.3 相間轉移觸媒之種類...................................................4   1.2.4 相間轉移催化反應之應用...............................................9   1.2.5 相間轉移觸媒之反應機構..............................................10  1.3 超音波之簡介............................................................14   1.3.1 超音波之原理與起源..................................................14   1.3.2 超音波之空穴作用....................................................15   1.3.3 超音波在液-液相之相間轉移催化反應的應用.............................16   1.3.4 超音波反應裝置......................................................16  1.4 本論文研究目的與內容....................................................18 第二章 文獻回顧..............................................................23  2.1 液-液相系統.............................................................23  2.2 液-固相系統.............................................................45  2.3 液-液-液相系統..........................................................51  2.4 液-固-液相系統..........................................................56 第三章 研究方法與結果........................................................59  3.1 前言....................................................................59  3.2 實驗藥品與儀器分析......................................................59   3.2.1 實驗藥品............................................................59   3.2.2 實驗儀器............................................................61   3.2.3 分析儀器............................................................61   3.2.4 產物之製備與純化....................................................63   3.2.5 產物分析與鑒定......................................................63   3.2.6 反應物與產物之校正曲線..............................................66  3.3 反應機構與反應動力學....................................................70   3.3.1 反應機構............................................................70   3.3.2 反應動力學模式之推導................................................71  3.4 反應變數對反應速率之影響................................................75   3.4.1 攪拌速率對反應速率之影響............................................75   3.4.2 水量對反應速率之影響................................................86   3.4.3 有機溶劑體積對反應速率之影響........................................89   3.4.4 觸媒用量對反應速率之影響............................................93   3.4.5 有機溶劑種類對反應速率之影.響.......................................96   3.4.6 相間轉移觸媒種類對反應速率之影響....................................99   3.4.7 鹼性物質種類對反應速率之影響.......................................104   3.4.8 鹼濃度對反應速率之影響.............................................107   3.4.9 反應物比例對反應速率之影..響.......................................111   3.4.10 反應溫度對反應速率之影響..........................................114   3.4.11 不同超音波功率對反應速率之影響....................................120 第四章 實驗設計法...........................................................123  4.1 前言...................................................................123   4.1.1 原理簡介...........................................................123   4.1.2 部分因素設計法計算介紹.............................................126  4.2 部分因素實驗設計實驗(25-1 fraction factorial analysis)...............130  4.3 分析結果與討論.........................................................132   4.3.1 FFD實驗分析結果....................................................132   4.3.2 各因素之影響分析...................................................132 第五章 結論與未來展望.......................................................137  5.1 結論...................................................................137  5.2 未來展望...............................................................139 第六章 參考文獻.............................................................141

    [1] Joshi, G. C.,N. Singh and L, M. Pande , “Dichlorocarbenene Generation and
    Reactions in Cationic Micelles Aqueous Phase. Part I. Cyclo Addition to
    Alkenes ”,Tetrahedron Letters 6, pp.1461-1464 (1972).
    [2] Fendler, J. E., “Catalysis in Micelle and Micromolecular System”,
    Academic ress, New York (1975).
    [3] Jarrouse, J., Hebd, C. R., “The influence of Quaternary Ammonium Chlorides
    on the Reaction of Labile Hydrogen Compounds and Chloride-Substituted
    Chloride Derivatives”, Acad. Sci. Ser. C232, pp. 1424-1426 (1951).
    [4] Starks, C. M., Liotta, C. L., “Phase Transfer Catalysis, Principles and
    Techniques”, Academic Press, New York (1978).
    [5] Starks, C. M., Liotta, C. L., Halpern, M., “Phase Transfer Catalysis,
    Fundamentals, Applications, and Industrial Perspectives”, Chapman & Hall,
    New York (1994).
    [6] Wang, M. L., Chen, W. H., Wang, F. S., “Kinetic study of synthesizing
    N-butylphthalimide under solid–liquid phase-transfer catalysis
    conditions”, Journal of Molecular Catalysis A: Chemical 236, pp. 65-71
    (2005).
    [7] Yang, H. M., Liu, H. C., “Kinetics for synthesizing benzyl salicylate via
    solid–liquid phase-transfer catalysis”, Applied Catalysis A: General 258,
    pp. 25-31 (2004).
    [8] Jin, G., Ido, T., Goto, S., “Rate enhancement effect of third liquid phase
    on dibenzyl ether production in solid–liquid–liquid phase transfer
    catalytic system”, Catalysis Today 79-80, pp. 471-478 (2003).
    [9] Baj, S., Siewniak, A., “Synthesis of dialkyl peroxides in the presence of
    polyethylene glycol or its derivatives as phase-transfer catalyst in
    liquid–liquid–liquid system”, Applied Catalysis A: General 321, pp.
    175-179 (2007).
    [10] Dehmlow, E. V., Dehmlow, S. S., “Phase Transfer Catalysis” Monographs in
    Morden Chemistry 11, Verlag Cheminem, Weinheim (1983).
    [11] Starks, C. M., “Phase-transfer catalysis. I. Heterogeneous reactions
    involving anion transfer by quaternary ammonium and phosphonium salts”,
    Journal of the American Chemical Society 93, pp 195-199 (1971).
    [12] Herriott, A. W.; Picker, D., “Phase Transfer Catalysis and Evaluation of
    Catalysts”, Journal of the American Chemical Society 97, pp. 2345-2349
    (1975).
    [13] Brandstrom, A.; Gustavil, K., “Ion Pair Extraction in Preparative Organic
    Chemistry”, Acta Chemica Scandinavica 23, pp. 1215-1218 (1969).
    [14] Sam, D. J.; Simmons, H. E., “Crown Polyether Chemistry Potassium
    Permanganate Oxidation in Benzene”, Journal of the American Chemical
    Society 94, pp. 4024-4025 (1972).
    [15] Jayachandran, J. P., Balakrishnan, T., Wang. M.L., “Phase-transfer-
    catalyzed Darzen’s condensation of chloroacetonitrile with cyclohexanone
    using aqueous sodium hydroxide and a new phase transfer catalyst”,
    Journal of Molecular Catalysis A: Chemical 152, pp. 91-98 (2000).
    [16] Naik, S. D. and Doraiswamy,L. K., “Phase Transfer Catalysis: Chemistry
    and Engineering”, AIChE Journal 44, pp. 612-646 (1998).
    [17] Mathias, L. J., Vaidya, R. A., “Inverse phase transfer catalysis. First
    report of a new class of interfacial reactions”, Journal of the American
    Chemical Society 108, pp. 1093-1094 (1986).
    [18] Wang, M. L., Ou, C. C., Jwo, J. J., “Kinetics of the reaction of benzoyl
    chloride and sodium carboxylate under inverse phase-transfer catalysis”,
    Journal of Molecular Catalysis. A: Chemical 99, pp. 153-160 (1995).
    [19] Joshi, G. C.; Sinah, N.; Pando, L. M., “Dichlorocarbenegeneation and
    Reaction in Cationic Micells in Aqueous Phase, Part I Cycles Addition to
    Alkenes”, Tetrahedron Letters, pp. 1461-1464 (1972).
    [20] Makosta, M.; Bialeeka, E., “Reactions of Organic Anions XXXVI, Catalytic
    Method of Preparation of 1-Chloro-1-phenylthiocyclopropane Derivative in
    Aqueous Medium”, Tetrahedron Letters, pp. 4517-4518 (1971).
    [21] Herriott, A. W., Picker, D., “On the Mechanism of Phase Transfer
    Catalysis”, Tetrahedron Letters, 44, pp. 4521-4524 (1972).
    [22] Rabinovitz, M., Cohen, Y.; Halpern, M., “Hydroxide Ion Initiated Reaction
    Under Phase Transfer Catalysis Condition; Mechanism and Implication”,
    Angewandte Chemie International Edition 25, pp. 960-970 (1986).
    [23] Suslick, K. S., “The Chemical Effects of Ultrasound”, Scientific
    American, Feb., pp. 80-86 (1989).
    [24] Wang, M. L., Rajendran, V., “Ethoxylation of p-chloronitrobenzene using
    phase-transfer catalysts by ultrasound irradiation – A kinetic study”,
    Ultrasonics Sonochemistry 14, pp. 368-374 (2007).
    [25] Wang M. L., Chen W. H., “Kinetic Study of Synthesizing
    Dimethoxydiphenylmethane under Phase-Transfer Catalysis and Ultrasonic
    Irradiation”, Industrial & Engineering Chemistry Research 48, pp.
    1376-1383 (2009).
    [26] Wang, M. L., Tseng, Y. H., “Phase-transfer catalytic reaction of dibromo-
    o-xylene and 1-butanol in two-phase solution”, Journal of Molecular
    Catalysis A: Chemical 203, pp. 79-93 (2002).
    [27] Wang, M. L., Chen, W. H., Ming-Hsiung, “Synthesis of
    dialkoxydiphenylmethane under phase transfer catalytic condition assisted
    by ultrasonic irradiation”, Reaction Kinetics and Catalysis Letters 95,
    pp. 47-52 (2008).
    [28] Xia, L., Tong, S., Jiang, Y., Jia, Y., Wang, J., “Interfacial chemistry
    behavior of phase transfer catalysis for hydroxide ion initiated
    reactions”, Colloids and Surfaces A: Physicochem. Eng. Aspects 317, pp.
    747–750 (2008).
    [29] Yang, H. M., Huang, C. C., “Kinetics for benzoylation of sodium phenoxide
    by liquid–liquid phase-transfer catalysis”, Applied Catalysis A: General
    299, pp. 258-265 (2006).
    [30] Jose, N., Sengupta, S., Basu, J.K., “Selective production of benzaldehyde
    by permanganate oxidation of benzyl alcohol using 18-crown-6 as phase
    transfer catalyst”, Journal of Molecular Catalysis A: Chemical 309, pp.
    153-158 (2009).
    [31] Wang, M. L., Tseng, Y. H., “Phase transfer catalytic reaction of
    n-bromobutane and sodium sulfide in a two-phase solution and its
    kinetics”, Journal of Molecular Catalysis A: Chemical 203, pp. 79-93
    (2003).
    [32] Wang, M. L., Chen, W. H., “Kinetic Study of Synthesizing
    Dimethoxydiphenylmethane under Phase-Transfer Catalysis and Ultrasonic
    Irradiation”, Industrial & Engineering Chemistry Research 48, pp.
    1376-1383 (2009).
    [33] Zeng, Z. X., Xue, W. L., Huo, W. L., Gao, X. C., Cai, L. Y., “Kinetics of
    Synthesis of Bis-(benzoxazolyl-2-methyl) Sulfide Under Phase-Transfer
    Catalysis Conditions”, International Journal of Chemical Kinetics 41, pp.
    296-302 (2008).
    [34] Wang, M. L., Rajendran, V., “Ethoxylation of p-chloronitrobenzene using
    phase-transfer catalysts by ultrasound irradiation – A kinetic study”,
    Ultrasonics Sonochemistry 14, pp. 368-374 (2007).
    [35] Baj, S., Siewniak, A., Socha, B., “Synthesis of dialkyl peroxides in the
    presence of polymer-supported phase-transfer catalysts”, Applied
    Catalysis A: General 309, pp. 85-90 (2006).
    [36] Sachdeva, T. O., Pant, K. K.,“Deep desulfurization of diesel via peroxide
    oxidation using phosphotungstic acid as phase transfer catalyst”, Fuel
    Processing Technology 91, pp. 1133-1138 (2010).
    [37] Cherlo, S. K. R., Devaki, K., Pushpavanam, S., “Phase transfer catalysis
    of alkaline hydrolysis of n-butyl acetate: Comparison of performance of
    batch and micro-reactors”, Chemical Engineering and Processing: Process
    Intensification 49, pp. 484-489 (2010).
    [38] Wang, M. L., Hsieh, Y. M., Chang, R. Y., “Kinetic study of
    dichlorocyclopropanation of 1,7-octadiene under phase-transfer catalysis
    conditions at high alkaline concentration”, Industrial and Engineering
    Chemistry Research 42, pp. 4702-4707 (2003).
    [39] Wang, M. L., Syam Prasad, G., “Microwave assisted phase-transfer
    catalytic ethoxylation of p-chloronitrobenzene—A kinetic study”, Journal
    of the Taiwan Institute of Chemical Engineers 41, pp. 81-85 (2010).
    [40] Yadav, G. D., Tekale, S. P.,“Selective O -alkylation of 2-naphthol using
    phosphonium-based ionic liquid as the phase transfer catalyst” Organic
    Process Research & Development 14, pp. 722-727 (2010).
    [41] Kameda, T., Ono, M, Grause, G., Mizoguchi, T., Yoshioka, T.,“Effect of a
    phase-transfer catalyst on the chemical modification of poly(vinyl
    chloride) by substitution with thiocyanate as a nucleophile”, Materials
    Chemistry and Physics 118, pp. 362-366 (2009).
    [42] Zhang, Y., Stanciulescu, M., Ikura, M.,“Rapid transesterification of
    soybean oil with phase transfer catalysts”, Applied Catalysis A: General
    366, pp. 176-183 (2009).
    [43] Baj, S., Chrobok, A., Siewniak, A.,“New and efficient technique for the
    synthesis of ε-caprolactone using KHSO5 as an oxidising agent in the
    presence of a phase transfer catalyst”, Applied Catalysis A: General 395,
    pp. 49-52 (2011).
    [44] Bright, Z. R., Luyeye, C. R., Morton, A. Ste. M., Sedenko, M., Landolt, R.
    G., Bronzi, M. J., Bohovic, K. M., Gonser, M. W. A., Lapainis, T. E.,
    Hendrickson, W.H.,“Competing reactions of secondary alcohols with sodium
    hypochlorite promoted by phase-transfer catalysis”, Journal of Organic
    Chemistry 70, pp. 684-687 (2005).
    [45] Halpern, M., Sasson, Y., Rabinovitz, M.,“Hydroxide ion initiated
    reactions under phase-transfer-catalysis conditions. 5. Isomerization of
    allylbenzene via hydroxide ion extraction”, Journal of Organic Chemistry
    48, pp. 1022-1025 (1993) .
    [46] Devulapelli, V.G., Weng, H. S., “Synthesis of cinnamyl acetate by solid-
    liquid phase transfer catalysis: Kinetic study with a batch reactor”,
    Catalysis Communications 10, pp. 1638-1642 (2009).
    [47] Yadav, G. D., Lande, S. V., “Rate intensive and selective etherification
    of vanillin with benzyl chloride under solid-liquid phase transfer
    catalysis by aqueous omega phase”, Journal of Molecular Catalysis A:
    Chemical 244, pp. 271-277 (2006) .
    [48] Yadav, G. D., Motirale, B. G., “Microwave-irradiated synthesis of
    nitrophen using peg 400 as phase transfer catalyst and solvent”, Organic
    Process Research and Development 13, pp. 341-348 (2009) .
    [49] Yadav, G. D., Motirale, B. G., “Novelties of solid-liquid phase transfer
    catalyzed synthesis of triclosan from potassium 2,4-dichlorophenolate and
    2,5-dichlorophenol”, Industrial and Engineering Chemistry Research 47,
    pp. 9055-9060 (2008) .
    [50] Desikan, S., Doraiswamy, L. K., “Enhanced activity of polymer-supported
    phase transfer catalysts”, Chemical Engineering Science 55, pp. 6119-6127
    (2006).
    [51] Baj, S., Siewniak, A., “Tri-liquid system in the synthesis of dialkyl
    peroxides using tetraalkylammonium salts as phase-transfer catalysts”,
    Applied Catalysis A: General 385, pp. 208-213 (2010).
    [52] Yang, H. M., Huang, C. C., “Catalytic benzoylation of 4-chloro-
    3-methylphenol sodium salt in third-liquid phase under conditions of phase-
    transfer catalysis”, Industrial & Engineering Chemistry Research 46, ,
    pp. 7915-7920 (2007).
    [53] Yadav, G. D., Motirale, B. G.,“Selective oxidation of methyl mandelate to
    methyl phenyl glyoxylate using liquid-liquid-liquid phase transfer
    catalysis”, Chemical Engineering Journal 156, pp. 328-336 (2010).
    [54] Sarhan, A. A., Ayad, D. M., Badawy, D. S., Monier, M.,“Phase transfer
    catalyzed heterogeneous N-deacetylation of chitin in alkaline solution”,
    Reactive & Functional Polymers 69 pp. 358-363 (2009).
    [55] Yang, H. M., Wu P. I., “Kinetics of phase-transfer catalyzed
    esterification of aliphatic dicarboxylate in solid–liquid system”,
    Applied Catalysis A: General 209, pp. 17-26 (2001).
    [56] Landini, D., Albanese, D., Maia, A.; Penso, M., “Key Role of Water for
    Nucleophilic substitutions in Phase-Transfer-Catalyzed Processes: A
    Mini-Review”, Industrial & Engineering Chemistry Research 40, pp.
    2396-2401 (2001).
    [57] 曾堯宣, “相間轉移催化技術合成雙醚化合物之研究”, 國立中正大學化學工程研究
    所博士論文 (2002).
    [58] O’Donnell, M. J., Eckrich, T. M. The Synthesis of Amino Acid Derivatives
    by Catalystic Phase-Transfer Alkylations, Tetrahedron Lett., 19, 4625-4628
    (1978).
    [59] Kobayashi, H., Sonoda, T., Iwamoto, H., "The First Application of Anion-
    catalyzed Phase-transfer Catalysis to Friedel-Crafts Alkylation",
    Chemistry Letters, pp.1185-1196 (1982).
    [60] Yang, H. M. and Wu, H. S., “Interfacial Mechanism and Kinetics of Phase-
    transfer Catalyst”, Catalysis Reviews 463, pp. 45 (2003).
    [61] Montgomery, D. C., Design and Analysis of Experiments, Fourth Edition,
    John Wiley & Sons, Inc., New York, USA (1997).
    [62] 李至發, “相間轉移觸媒催化技術合成醚類化合物之動力學研究”, 國立中正大學化
    學工程研究所博士論文 (2005).
    [63] 陳朝杰, “利用相間轉移觸媒合成醚類之研究”, 國立中正大學化學工程研究所碩士
    論文 (2000).
    [64] 黃君平, “利用相間轉移觸媒氧化丁基硫醚與其應用之研究”, 東海大學化學工程研
    究所碩士論文 (2003).
    [65] 許豪麟, “以固定化相間轉移觸媒催化苯甲酸鈉之酯化反應動力學研究”, 國立中興
    大學化學工程研究所碩士論文(2003).
    [66] 王凱弘, “以有機產物為溶劑之相間轉移催化技術-合成丙烯基苯基醚”, 國立成功大
    學化學工程研究所碩士論文(2002).
    [67] 王清海, “有機物質對鍶核種在蒙托土吸附行為影響之研究”, 國立清華大學核子工
    程與科學研究所博士論文(2010).

    無法下載圖示 全文公開日期 2016/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE