簡易檢索 / 詳目顯示

研究生: 潘建廷
Jian-Ting Pan
論文名稱: 木材使用優先權系統:高層木構造與RC構造之施工期程及成本比較
The System of Wood Use Priority: Comparison of High-rise Wooden Building and RC Building on construction schedule and cost
指導教授: 蔡孟廷
Meng-Ting Tsai
口試委員: 江維華
Wei-Hua Chaing
阮怡凱
Yi-Kai Ruan
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 高層木構造施工成本施工期程永續發展
外文關鍵詞: High-rise wooden building, Construction cost, Construction period, Sustainable development
相關次數: 點閱:332下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

木材優先使用權一詞出現在「The Wood from The Trees:The Use of Timber in Constructionr」用來判別何種木材,可以開發出具體的案例研究,來證明何種木材能在建築結構中發揮最有效的環保和經濟效益。本研究摘取前述之詞彙,試圖比較在國內興建一棟高層集合住宅,材料分別由木構造和鋼筋混凝土構造,進行成本和工期之評估,並針對木構造由設計到施工組裝之建造流程,尋找出各階段之減少時間及金錢成本之可能性,藉此引導未來使用者在建築材料決策中,進行材料使用權的評估與判斷。

本研究延續「Concrete Apartment Tower in Los Angeles Reimagined in Mass Timber」,此研究證明高層木構造在地震帶具有當地法規所需之結構能力,以該研究20層集合住宅建築作為本研究參考模型。根據材料運輸限制、施工組裝便利性以及結構性之考量,對原研究模型進行修改,例如新增樑結構及修改樓板大小。本研究分別對木構造及鋼筋混凝土構造進行造價成本及施工期程的分析比較,兩構造型式在相同的總樓地板面積情況下,木構造建築之主結構體每坪造價比鋼筋混凝土構造約高出15,513元/坪,此差額約為營建施工結構工程費用中的37.2%。施工工期依分析所得結果,本研究模型木構造之營建工期每層樓比鋼筋混凝土構造快了約15日曆天,20層樓總樓地板共22180平方公尺之建築,總工程之工期差異可達120日曆天。

而從木構造減低成本的角度來探討,在建造項目成本比例中,材料項目占了總體的96.96%,其中包含木材運輸、製造加工、耗損和海運資料文件下櫃費。


The term, wood use priority, appears in ‘’The Wood from The Trees:The Use of Timber in Construction’’ to identify which wood can be used to develop specific case studies to demonstrate the more efficient use of wood products in structural construction. I extract the vocabulary and attempt to compare cost and construction period that we build a high-rise complex housing by wood and reinforced concrete. For the construction process of wood construction, from design to construction stage, the possibility of reducing the time and money cost of each stage is sought, thereby guiding future users to evaluate the cost and time from materials in the decision of building materials.

This research continues "Concrete Apartment Tower in Los Angeles Reimagined in Mass Timber”, which demonstrates high-rise wooden building have the structural capabilities required by local regulations in seismic area. I take 20-story residential buildings from it as a reference model. The original research model was modified according to material transportation restrictions and structural considerations, such as adding beam structures and modifying the floor size.

The construction period and cost of the wooden structure and the reinforced concrete structure are analyzed and compared respectively. Under the same floor area of the same building, the cost of main structure in wooden building is amount of 15,513 NTD / ping(3.305m^2) higher than the reinforced concrete structure, the difference is about 37.2%. According to the analysis results, the construction period of the wooden building is about 15 days each floor faster than the reinforced concrete building, and the total floor area of the 20-story building is 22180m^2, the difference in the duration of the total project can reach 120 days.

From the perspective of reducing the cost of wooden construction, material projects accounted for 96.96% of the total cost of construction projects, including timber transportation, manufacturing, processing, and shipping documents.

Key words: High-rise wooden building, Construction cost, Construction period, Sustainable development.

摘要 I Abstract II 誌謝 III 第1章 緒論 1 1-1研究背景 1 1-2研究動機與目的 2 1-3 研究流程及架構 3 第2章 文獻回顧 4 2-1氣候變遷及全球暖化 4 2-2木材特性與森林資源 5 2-2-1臺灣林業概況 6 2-2-3 永續林場管理 6 2-3工程木製品與高層木構造 8 2-3-1工程木製品 9 2-3-2國際木構造發展趨勢 12 2-3-3高層木構造案例 13 2-3-4木構造成本節省案例 16 2-4施工成本估價 17 2-4-1結構體材料與樓地板面積比例 19 2-4-2結構工程與材料比例 20 2-4施工工期推估 21 2-4-1施工工期與成本關係 21 2-4-2影響工程進度因素 21 2-4-3工期推估方式 22 第3章 高層木構評估模型建造流程 23 3-1研究範圍邊界 23 3-2評估模型背景與假設基地 24 3-2-1評估模型建築基本資訊 27 3-3連接件設計 30 3-3-1基座-柱 32 3-3-2柱-樑-斜撐 35 3-3-3斜撐-樑 39 3-3-4樑-板 41 3-3-5板-板 42 3-3-6板-牆 46 3-4木材用量計算 49 3-4-1柱 49 3-4-2樑 51 3-4-3 斜樑 54 3-4-4 板 56 3-6運輸作業及木材存放 67 3-6-1海運限制 72 3-6-1陸運限制 73 3-6-3材料存放 73 3-7施工組裝流程 74 3-7-1吊裝作業與人力 76 3-7-2施工防潮措施 78 3-7-3施工防火措施 79 3-8建築時程 79 3-9成本盤查 81 3-9-1研究限制 81 3-9-2成本評估方法 82 3-9-3結構工程總成本計算表 83 第4章 鋼筋混凝土構造之成本與工期 84 4-1筋混凝土模型資訊與結構成本計算 84 4-1-1單價分析 85 4-1-2結構成本計算 87 4-2鋼筋混凝土模型施工期程計算 88 第5章 木構造與鋼筋混凝土造比較 90 5-1研究模型成本數值探討 91 5-2建造直接成本比較分析 93 5-3 施工期程比較分析 95 5-3-1施工期程與成本關係分析 97 5-4小結 98 第6章 結論與建議 99 6-1結論 99 6-2建議 100 參考文獻 103 中文文獻 103 英文文獻 104 網路文獻 107 附錄 109 附錄A鍍鋅鋼板連接件圖說 109 附錄B台北市某20層樓新建工程資金流量表 113 附錄C台北市某20層樓新建工程營建工程費用估算表 114  

[C1]蘇憲男、吳玉祥(2012)。高樓建築工程工料單價分析實用手冊。台北市:詹式。
[C2]許書宗(1998)。RC建築結構體估算實例。台北市:詹式。
[C3]林金面(2014)。施工估價。台北市:文笙。
[C4]陳咏麟(2011)。鋼筋混凝土構造樓層單價預測與結構體工期推估。
[C5]王妲(2008)。建築工程結構材料用量之統計與分析以新竹地區 R.C 住宅為例。
[C6]邱佳淳(2012)。新建建築工程大宗材料用量分析之研究。
[C7]崔征國(1992)。施工計畫(三)軀幹工程。台北市:詹式。
[C8]營建物價(2019)。臺灣營建研究院。台北市:台灣營建雜誌。
[C9]林俊成、陳溢宏(2016)。近10年實木產品進出口價值分析。臺灣林業,
41(4),P83-88。
[C10]林俊成、詹為巽 、邱祈榮(2018)。臺灣何處適合發展永續林業生產。林業研究專訊, 25(5),P41-45。
[C11]吳俊賢(2009)。森林經營與碳吸存。林業研究專訊,16(2),P47-55。
[C12]王松永(2013)。國産造林木材應用於木構造建築。台北市:行政院農業委員會林務局。
[C13]蔡孟廷、方尹萍、張紋韶(2018)。都市木造的未來。台北市:麥浩斯。
[C14]日經建築編,蔡孟廷譯(2019)。世界新式木構造建築設計-實踐都市高層木造建築的理論與實務全集。台北市:麥浩斯。
[C15]黃懷德(2012)。應用 BIM 工具模擬鋼筋混凝土住宅施工程序之實證研究.。
[C16]林麗英(2003)。木質構造建築物金融貸款及火災保險障礙排除之研究。
[C17]內政部營建署(2011)。木構造建築物設計及施工技術規範。
[C18]劉賢樹(2004)。符合綠建築基本指標之成本分析研究-以集合住宅四項評估指標為例。
[C19]簡惠瑜(2008)。永續建築對不動產市場認知價值影響之研究。
[C20]陳勇男、林草英、莊憲正(1999)。中低樓層建築推動鋼構造範例之研究。
[C21]鄭元良、陳啟仁、林志彥(2012)。木構造建築物設計及施工技術規範修訂之研究。
[C22]范姜逸珊(2018)。建築工程不同階段施工合理工期推估模式之研究。
[C23]林耀煌(2005)。營建工程施工規劃與管理控制。台北市:長松文化。
[E1]Marcus Knauf, Rainer Joosten,& Arno Fruhwald(2016). Assessing Fossil Fuel Substitution through Wood Use Based on Long-term Simulations. Carbon Management, Volume 7, 2016 - Issue 1-2.
[E2]Matthew Timmers,& Andrew Tsay Jacons. (2017). Concrete Apartment Tower in Los Angeles Reimagined in Mass Timber. Engineering Structures, Volume 167, 15 July 2018, Pages 716-724.
[E3] Moroder D(2016). Floor Diaphragms in Multi-storey Timber Buildings University of Canterbury: Christchurch.
[E4]Cristiano Loss, Maurizio Piazza, & Riccardo Zandonini. (2015). Connections for Steel-timber Hybrid Prefabricated Buildings. Part I:Experimental tests. Construction and Building Materials, Volume 122, 30 September 2016, Pages 781-795.
[E5]American Wood Council(AWC)(2018), NDS National Design Specification. Leesburg, VA20175, American Wood Council.
[E6]Simpson Strong-tie(2019), Wood construction Connectors 2019-2020. Pleasanton, CA 94588, Simpson Strong-tie.
[E7]Rothoblaas(2018), Canadian Structural Design Guide. 39040 Cortaccia (BZ), Italy, Rothoblaas.
[E8]Rune Abrahamsen(2017,April). Mjøstårnet - Construction of An 81m Tall Timber Building. Internationales Holzbau-Forum IHF 2017, Holzbau-Forum .
[E9]Rune B Abrahamsen,& Kjell Arne Malo(2014, August). STRUCTURAL DESIGN AND ASSEMBLY OF “TREET” -A 14-STOREY TIMBER RESIDENTIAL BUILDING IN NORWAY. World Conference on Timber Engineering(WCTE).
[E10] Binational Softwood Lumber Council and Forestry Innovation Investment Ltd (2017). Nail Laminated Timber Canadian Design & construction Guide.
[E11] Erol Karacabeyli, &Brad Douglas(2013). CLT Handbook. Pointe-Claire QC, FPInnovations.
[E12] Azadeh Fallahi, Mohamed Kasbar, Sheryl Staub-French, &Thomas Froese (2017). Brock Commons Tallwood House: Construction Overview. The University of British Columbia.
[E13] Valerie Levee, Gerald Beaulieu, Christian Dagenais, Caroline Frenette, Audrey Latulippe, &Simon T. Bellavance (2018). ORIGINE: POINTE-AUX-LIÈVRES ECOCONDOS QUEBEC CITY.
[E14] Francisco Caderon Cifuentes, Ariel Li, Sheryl Staub-French, &Thomas Froese (2017). Brock Commons Tallwood House: Performance Overview. The University of British Columbia.
[E15] E Karacabeyli,& C Lum (2014). Technical Guide for the Design and Construction of Tall Wood Buildings in Canada 90% Draft. FPInnovations.
[E16] ShinichiroFujimori,& YuzuruMatsuoka(2011). Development of method for estimation of world industrial energy consumption and its application. Energy Economics, Volume 33, Issue 3, May 2011, Pages 461-473.
[E17]Natural Resource Canada(2014), “The State of Canada’s Forest Annual Report 2014,” pp. 1–63.
[E18] Canadian Wood Council (CWC)(2015). “Canadian Wood . Renewable by Nature . Sustainable by Design .”
[E19]Canadian Wood Council(CWC)(2013). Data compiled using the Athena Ecocalculator with a data set for Toronto, Ontario.
[E20] Forestry Innovation Investment(2014). “Survey of International Tall Wood Buildings,” .
[E21] KLH Massivholz (2018, May). CroSS-laMinaTed TiMber. KLH Massivholz GmbH.
[E22] Woodworks Case Study, ElDorado High School Students Get the Wow They Deserve, 2011.
[E23] Woodworks, Innovations in Wood: Emory Point, 2012.
[E24] Woodworks Case Study, Big Box Retail Comparison, 2015.
[E25] Woodworks Case Study, Wood Brings the Savings Home, 2013.
[E26] Xiaoyue Zhang, MarjanPopovski, & ThomasTannert(2018). High-capacity hold-down for mass-timber buildings. Construction and Building Materials,
Volume 164, 10 March 2018, Pages 688-703.
[E27] Jamal Khatib (2016). Sustainability of Construction Materials: 8- Sustainability of engineered wood products.
[E28] StructureCraft(2019). Dowel Laminated Timber – Design and Profile Guide.
[E29] Mengting Tsai,& Anthony Sugiharto Wonodihardjo(2018). Achieving Sustainability of Traditional Wooden Houses in Indonesia by Utilization of Cost-Efficient Waste-Wood Composite. Sustainability, Volume 10, Issue 6, May 2018.
[E30] Brunet-Navarro, P. Jochheim, & H. Muys (2016). Modelling carbon stocks and fluxes in the wood product sector: A comparative review. Global Change Biology,
Volume22, Issue7, July 2016, Pages 2555-2569.
[E31] Michael H. Ramage, Henry Burridge, Marta Busse-Wicher, George Fereday,
Thomas Reynolds, Darshil U. Shah, Guanglu Wu, Li Yu, Patrick Fleming,
Danielle Densley-Tingley, Julian Allwood, Paul Dupree, P.F. Linden,& Oren Scherman(2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, Volume 68, Part 1, February 2017, Pages 333-359.
[E32] Pachauri, R. K. , Allen, M. R. , Barros, V. R. , Broome, J. , Cramer, W. , Christ, R. , Church, J. A. , Clarke, L. , Dahe, Q. , Dasgupta, P. , Dubash, N. K. ,Edenhofer, O. , Elgizouli, I. , Field, C. B. , Forster, P. , Friedlingstein, P. , Fuglestvedt, J. , Gomez-Echeverri, L. , Hallegatte, S. , Hegerl, G. , Howden, M. , Jiang, K. , Jimenez Cisneroz, B. , Kattsov, V. , Lee, H. , Mach, K. J. , Marotzke, J. , Mastrandrea, M. D. , Meyer, L. , Minx, J. , Mulugetta, Y. , O'Brien, K. , Oppenheimer, M. , Pereira, J. J. , Pichs-Madruga, R. , Plattner, G. K. , Pörtner, H. O. , Power, S. B. , Preston, B. , Ravindranath, N. H. , Reisinger, A. ,Riahi, K. , Rusticucci, M. , Scholes, R. , Seyboth, K. , Sokona, Y. , Stavins, R. , Stocker, T. F. , Tschakert, P. , van Vuuren, D. and van Ypserle, J. P. (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / R. Pachauri and L. Meyer (editors) , Geneva, Switzerland, IPCC, 151 p., ISBN: 978-92-9169-143-2 .
[E33] Erik A. Poirier, Azadeh Fallahi, Mohamed Kasbar, Sheryl Staub-French, &Thomas Froese(2017). Brock Commons Tallwood House: Construction Overview. The University of British Columbia.
[E34] SOM (Skidmore, Owings, and Merrill) LLP. (2017). “Timber tower research project: Physical Testing Report#1.” Oregon State University.

QR CODE