簡易檢索 / 詳目顯示

研究生: 高娣雅
DIAH - KUSUMA WARDHANI
論文名稱: 生物組織內擴散的光學研究模擬
THE DIFFUSION OF LIGHT THROUGH BIOLOGICAL TISSUES
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 黃柏仁
Bohr-Ran Huang
陳鴻興
Hung-Shing, Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 擴散生物組織反射透射
外文關鍵詞: light, diffusion, biological tissues, reflection, transmission
相關次數: 點閱:232下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今對生物醫學成像的要求日漸益增,因此研究人員試圖開發更好的技術,進行非侵入式的疾病檢測和治療。其中,光學斷層掃描技術係利用生物體組織對特定光的散射及吸收程度不同,來重建影像。本研究是透過組織或病害本身的光學特性,來重建正常組織和病變組織之影像。利用光擴散理論並修正同調光的卷積函數,來計算光在組織中的穿透或反射傳播過程。在Fresnel邊界條件下,針對瞬態輻射變換建立一散射、吸收、發射的三維離散坐標。對Fresnel邊界效應於組織和病害的漫反射進行研究,反射和穿透輻射量值在一有厚度的組織層內,其Fresnel反射率是非常重要的。 雷射光源模擬部分為高斯光束. 模擬步驟如下: 一、高斯光束穿透一薄透鏡。二、傳播至一特定光學系統。三、藉由穿透和反射的相關函數,來模擬光傳播在所假設的組織和病變。模擬中發現,當高斯光束傳播至薄透鏡,其光腰和曲率會改變。從第二個模擬中,當高斯光束進入到光學系統去檢測眼角膜時,可得到光從眼角膜出來的繞射圖案分布 透過組織和病變的穿透/反射光束模擬,發現光打至正常組織和病變組織會產生不同繞射圖案。其圖案在正常組織中分布均勻,但在病變組織中,反射或穿透的繞射圖案較不規則。


    Nowadays the need of biomedical imaging is growing so fast, researchers try to develop better technologies to provide noninvasive methods in disease detection and treatment. It follows by development of optical tomography to reconstruct transmitted and scattered light into an object inside a media. This research concentrate on lesion imaging on normal tissues using optical properties of tissues and lesion. We modified diffusion theory into a convolution function of coherence condition of light. Convolution can be applied to calculate the reflectance for arbitrary sources on transmission or reflection process in tissues.
    The discrete ordinates method is developed to study transient radiative transfer in three-dimensional scattering, absorbing, and emitting media subject to Fresnel boundary condition. The Fresnel boundary effect with diffuse reflection at the tissues and lesion is investigated. The reflectance and transmittance of radiative flux inside the tissues in the slab medium. The adequate incorporation of Fresnel’s reflection is very important.
    A light beam in a Gaussian format is used in the simulation for the reason of the closest waveform of laser. There are some steps of simulation in this research. First, diffraction by thin lens takes place. Second, the simulation of diffraction is caused by certain optical systems. Third, the simulation of light propagation into tissues and lesion is determined by the correlation function of the transmission and reflection of light in the phantom tissues and lesion.
    From the simulation, we found that only the beam waist and curvature are altered when a gaussian beam with a certain parameter transmit into thin lens. And for the second simulation, when gaussian beam transmitting into optical system to examine cornea, the distribution of diffraction pattern transmitted out from cornea is found. In the simulation of the transmitted and reflected beams at tissues and lesion, it can be seen there are some different patterns between light transmitted in normal tissues and lesion. In normal tissues, the pattern appears more uniformly. But when there is a lesion inside the tissues, the reflection and/or transmission pattern appears more irregular.

    ABSTRACT II ACKNOWLEDGEMENT IV TABLE OF CONTENT V LIST FIGURES VII LIST TABLES VIII CHAPTER 1 – INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Objective 3 1.3 Organization 3 CHAPTER 2 - LITERATURE REVIEW 5 2.1 Turbid Media 5 2.2 Light Transport Equations 6 2.3 Backscattering Theory 9 2.4 Convolusion Theory 11 2.5 Fresnel Diffraction 13 2.6 Correlation 13 CHAPTER 3 - PROPOSED METHOD 16 3.1 Optical Diffraction 17 3.1.1 Gaussian Beam Light Transmitting into Positive Thin Lens 18 3.1.2 Gaussian Beam Light Transmitting into Optical Systems 19 3.2 Optical Diffuse Transmittance and Reflectance In Tissues 22 CHAPTER 4 - SIMULATION AND RESULT 29 4.1 Gaussian Light Beam Diffraction Simulation 29 4.1.1 Gaussian Beam Transmit into Positive Thin Lens 30 4.2 Optical Transmition and Reflection in Tissues 33 4.3 Correlation Function of Transmittion & Reflection 38 CHAPTER 5 – CONCLUSION AND FUTURE WORKS 39 REFERENCES 41 APPENDIX I 47 A. Matlab Source Code for Gaussian Beam Transmit into Positive Thin Lens 47 B. Matlab Source Code for Gaussian Beam Transmit into Optical System 48 C. Matlab Source Code for Optical Diffuse Reflection in Normal Tissues 49 D. Matlab Source Code for Optical Diffuse Reflection in Lesion 51

    [1] B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem. 148, 173-183 (1943).
    [2] Y. W. Brans and W. W. Hay, Physiological Monitoring and Instrument Diagnosis in Perinatal and Neonatal Medicine (Cambridge University Press, New York, 1977).
    [3] F. A. Ferrari, K. Trach, D. LeCoq, J. Spence, and J. A. Hoch, "Characterization of the spo0A locus and its deduced product," Proceedings of the National Academy of Sciences of the United States of America 82, 2647-2651 (1985).
    [4] E. Ferrari, S. M. H. Howard, and J. A. Hoch, “Effect of stage 0 sporulation mutations on subtilisin expression,” J. Bacteriol. 166, 173-179 (1986).
    [5] T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, 2003).
    [6] F. Fanjul-Velez and J. L. Arce-Diego, “Light propagation in turbid media: Application to biological tissues,” in Proceedings of 21st International Conference, Radioelektronika, 1-4 (2011).
    [7] S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302:1-19 (2008).
    [8] S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol. 58, R37-R61 (2013).
    [9] R. Graff, A. C. M. Dassel, M. H. Koelink, F.d. Mul, F. F. M. d. Mul, J. G. Aarnoudse, et al., “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426-434 (1993).
    [10] T. C. Zhu, S. M. Hahn, A. S. Kapatkin, A. Dimofte, C. E. Rodriguez, T. G. Vulcan, E. Glatstein, and R. A. Hsi, “ In vivo optical properties of normal canine prostate at 732nm using motexafin lutetium–mediated photodynamic therapy,” Photochem. Photobiol. 77, 81-88 (2003).
    [11] W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biology tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [12] B. C. Wilson, W. P. Jeeves, and D. M. Lowe, “In vivo and postmortem measurements of the attenuation spectra of light in mammalian tissues,” Photochem. Photobiol. 42, 153-162 (1985).
    [13] R. Marchesini, C. Clementeb, E. Pignolia, and M. Brambillac, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” Photochem. Photobiol. 16, 127-140 (1992).
    [14] J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Biomed. Opt. 9, 221-229 (2004).
    [15] F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939-4950 (1999).
    [16] J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” Biomed. Opt. 10, 1-7 (2005).
    [17] R. L. v. Veen, H. J. Sterenborg, A. W. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” Biomed. Opt. 9, 1129-1136 (2004).
    [18] J. Mobley and T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, New York, 2003).
    [19] T. C. Zhu, A. Dimofte, J. C. Finlay, D. Stripp, T. Busch, J. Miles, R. Whittington, S. B. Malkowicz, Z. Tochner, E. Glatstein, and S. M. Hahn, “Optical properties of human prostate at 732nm measured in vivo during motexafin lutetium–mediated photodynamic therapy,” Photochem. Photobiol. 81, 96-105 (2005).
    [20] G. Branco, The Development and Evaluation of Head Probes for Optical Imaging of the Infant Head ( London Univ., London, 2007).
    [21] A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).
    [22] A. J. Welch and M. J. C. v. Gemer, Optical-Thermal Response of Laser-Irradiated Tissue 2nd ed. (Springer, London, 2011).
    [23] L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Willey, New Jersey, 2007).
    [24] L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Meth. Programs Biomed. 61, 163–170 (1999).
    [25] R. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [26] M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
    [27] X. Cheng and D. A. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Opt. Express 3, 118 (1998).
    [28] L. V. Wang, “Rapid modeling of diffuse reflectance of light in turbid slabs,” J. Opt. Soc. Am. A 15, 936-944 (1998).
    [29] A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
    [30] S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and Reconstruction,” Phys. Med. Biol. 42, 841-853 (1997).
    [31] M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh,” Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt Lett. 20, 426-428 (1995).
    [32] H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253-266 (1996).
    [33] M. V. Klibanov, T. R. Lucas and R. M. Frank, “ A fast and accurate imaging algorithm in optical/diffusion tomography,” Inverse Probl. 13, 1341-1361 (1997).
    [34] S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” Proc. SPIE IS11, 35-64 (1993).
    [35] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. (IEEE Press, New York, 1988).
    [36] D. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404-413 (1997).
    [37] E. W. Weisstein, “Cross-correlation theorem,” http://mathworld.wolfram.com/Cross-CorrelationTheorem.html.
    [38] L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 38, 141-150 (1997).
    [39] L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Willey, New Jersey, 2007).
    [40] S. M. Tan, “Linear systems,” http://home.comcast.net/~szemengtan/.
    [41] R. G. W. A. M. Steinberg, “Coherence” in Access Science (McGraw Hill, 2008).
    [42] M. Born and E. Wolf, Principles of Optics 7th ed. (Cambridge University Press, 1999).
    [43] M. E. Anderson and G. E. Trahey, A Seminar on k-space Applied to Medical Ultrasound (Department of Biomedical Engineering of Duke University, 2000).
    [44] R. C. Mureşan, “The Coherence Theory: Simple attentional modulation effects,” Neurocomputing 58-60, 949 (2004).
    [45] L. R. Arnaut, “Spatial correlation functions of random electromagnetic fields in the presence of a semi-infinite isotropic medium,” Phys. Rev. E. 74, 056610:1-8 (2006).
    [46] D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192-215 (1997).
    [47] R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue, ” Appl. Opt. 20, 2097-2107 (1981).
    [48] J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345-350 (1996).
    [49] H. Z. Cummins and H. L. Swinney, “Light Beating Spectroscopy,” Prog. Opt. 8, 133-200 (1970).
    [50] K. Vynck, “Polarization and spatial coherence of electromagnetic waves in disordered media,” http://mesoimage.grenoble.cnrs.fr/IMG/pdf/vynck13.pdf
    [51] A. M. Ali, M. K. Taher and F. A. Zghair, “Preliminary study for non – invasive optical detection of squamous and basal cell carcinomas,” Biomed. Eng. OnLine 11, 88:1-17 (2012).
    [52] M. A. Digman and E. Gratton, “Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy,” Wiley. Interdiscp. Rev. Syst. Biol. Med. 1, 273-282 (2009).

    QR CODE