簡易檢索 / 詳目顯示

研究生: 李姿儀
Zi-Yi Li
論文名稱: 探討血栓機械性質對取栓支架設計的影響
Study of the thrombus mechanical property on the design of stent retriever
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 郭俞麟
Yu-Lin, Joseph, Kuo
周育任
yu-jen.chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 急性缺血性腦中風取栓支架機械取栓術血栓
外文關鍵詞: acute ischemic stroke, stent retriever, thrombectomy, thrombosis
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

全世界每年中風人數逐年增加,因血栓堵塞造成缺血性腦中風(acute ischemic stroke, AIS)更是主要原因。機械取栓術(mechanical thrombectomy)為一新興且可有效治療缺血性腦中風的方式。取栓過程為以腦部取栓支架(stent retriever)壓縮至支架輸送系統(stent delivery system)內,再經由微導管(guide catheter)釋放於腦內血栓堵塞處,利用鎳鈦材料支架具有的形狀記憶特性,在人體溫度逐漸擴張嵌進血栓內,再經由支架回收至導管內的同時一併將血栓取出,以恢復腦血管的血流順暢,完成機械取栓術。
  本研究使用工程模擬軟體ANSYS建立支架擴張使血栓受到擠壓的有限元素分析模型,藉由分析新鮮及老化血栓所具有的不同材料特性,使血栓受取栓支架擠壓後所產生應力及應變分佈的影響。並透過模擬試驗在不同血栓參數情形下,探討血栓受擠壓後達到破裂所需的下壓力。本研究並進一步以有限元素模型分析鎳鈦取栓支架從導管中釋放後所產生的徑向力,並與血栓受擠壓達到破裂所需的下壓力進行比較,探討不同取栓支架設計對穿透血栓能力的影響。
之前的研究中指出取栓支架結構寬度越小能大幅降低支架能嵌進及取出血栓所需之徑向力,因此在本實驗中以模擬五種不同鎳鈦取栓支架之寬度,各別為60μm、80μm、100μm、120μm、150μm之結構,並在結果中成功驗證支架結構寬度越小其能完成取栓的徑向力需求就越低,同時也減少了支架取栓過程造成血管管壁損傷的風險。
本研究針對管徑為4mm血管之血栓阻塞,與在血管中釋放已壓縮至直徑2mm的取栓支架為模擬環境,探討取栓支架可達到穿透血栓並減少傷害血管壁風險的設計條件。當取栓支架從導管釋放時,取栓支架直徑小且擴張徑向力較大;反之,當取栓支架直徑漸漸擴大後,其徑向力漸漸變小。因此當取栓支架穿透血栓到達血管壁時,藉由支架擴張力量減少,達到不傷害血管壁及避免血管破裂,達到更好的支架機械取栓結果。


The number of strokes in the world is increasing year by year. The acute ischemic stroke (AIS) caused by clogging is the main reason of brain strokes. In the process of mechanical thrombus removal, the brain stent retriever is compressed into the delivery system, and then the stent is placed in the brain thrombus blockage through a guide catheter. The stent with the characteristics of nitinol material, with memory alloy properties, is used to release it, and the stent is gradually expanded and embedded in the thrombus due to the influence of human body temperature, and then retrieved into the catheter by the stent. At the same time, the thrombus is removed and the blood flow is restored to complete the mechanical retriever thrombectomy.
This study used engineering simulation software ANSYS and the material properties of fresh and aged thrombus to investigate the stress and strain distribution of a thrombus when a stent expanded and pressed on it by the finite element model (FEM) and simulation. The required forces to reach the thrombus fracture by the stent were calculated by the FEM simulation results according to different thrombus properties. In addition, the radial force produced by a nitinol stent released from a guide catheter were predicted by the FEM simulation. The required forces to reach the thrombus fracture and the radial force produced by the nitinol stent were compared to discuss the thrombus penetration ability of stents with different design.
Previous studies indicated that the smaller strut width of the stent retriever can greatly reduce the required radial force of the stent. In this experiment, nitinol stents with five different strut widths, 60μm、80μm、100μm、120μm、150μm respectively, were studied and the results showed that the smaller the strut width, the lower radial force is required for penetrating the thrombus, and the risk of hurting the vascular wall by the stent is reduced.
This study aimed at the thrombus blockage of a vascular with 4mm diameter, and retrieved by a stent retriever released from a 2mm diameter catheter as the simulated environment to explore the stent design consideration for achieving better mechanical thrombectomy: the stent retriever can penetrate the thrombus and the risk of damaging the vascular wall can be reduced. When the stent retriever is released from the catheter, the stent provides the maximum radial force. In the following, when the stent expands to a larger diameter, the radial force is decreasing gradually. After penetrating the thrombus and reaching the vascular wall, the radial force of the stent becomes small to prevent vascular wall damage and rupture.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2研究動機與目的 3 第二章 文獻回顧 5 2.1 機械取栓支架 5 2.2 腦部血管 8 2.3 血栓 9 2.3.1 血栓材料性質 9 2.3.2 血栓機械試驗 14 2.4 取栓支架機械性質 17 第三章 實驗方法 22 3.1 血栓材料 24 3.1.1 血栓材料性質及特性 24 3.1.2多線性等向硬化模型(multilinear isotropic hardening model) 25 3.1.3 模擬機械試驗 26 3.1.4 新鮮的血栓 27 3.1.5 老化的血栓 32 3.2血管尺寸參數及建立 33 3.2.1動脈血管直徑參數 33 3.2.2血管厚度參數 35 3.3有限元素模擬 38 3.3.1 有限元素模型建立 39 3.3.2 鎳鈦支架材料性質 40 3.3.3 血管材料參數 42 3.3.4 邊界條件設定 42 3.3.4.1 血栓模擬之邊界條件 42 3.3.4.2 血管模擬之邊界條件 44 3.3.4.3 支架之邊界條件 46 3.4 取栓支架繪製 47 3.5 取栓支架徑向力 50 第四章 實驗結果與討論 53 4.1多線性等向硬化模型驗證 53 4.2 血栓材料之壓縮模擬試驗 54 4.2.1 圓柱狀之新鮮血栓模擬 54 4.2.2 不同下壓位移量之新鮮及老化血栓變化 57 4.3有無血管之壓縮模擬結果 59 4.3模擬血栓所需下壓力之有限元素模型 62 4.3.1 有無血管影響之血栓下壓力 65 4.3.2新鮮及老化之血栓模擬結果比較 67 4.4 取栓支架之有限元素模擬 69 4.4.1 取栓支架圓角化 69 4.4.2 取栓支架徑向力 70 4.5實驗數據比較 73 第五章 結論與未來展望 78 5.1結論 78 5.2未來展望 81 參考文獻 82

[1] 湯訟君, 鄭建興等, "急性缺血性腦中風治療的最新發展",台灣醫界, 60(4), 2017.
[2] 張復瑜, "新型腦動脈取栓支架加工技術及設計研發," 科技部專題研究計畫書2019.
[3] 廖年晨, "神經內科醫師的另一個藍海-動脈取栓," 腦中風會訊, 24(2), 27-32, 2017.
[4] Yoo, A. J., & Andersson, T. "Thrombectomy in acute ischemic
stroke: challenges to procedural success. Journal of Stroke," 19(2), 121,2017.
[5] K Boyle, RA Joundi, RI Aviv, "An historical and contemporary review of endovascular therapy for acute ischemic stroke," Neurovascular Imaging 3.1 (2017),1.
[6] Johnson, S., Duffy, S., Gunning, G., Gilvarry, M., McGarry, J. P., & McHugh, P. E. "Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Annals of Biomedical Engineering," 45(11), 2494-2508,2017.
[7] https://bafound.org/about-brain-aneurysums/brain-aneurysm-basics/u
Nderstanding-the-brain/
[8] Prince, H. C., Saliba, A. J., Wheeler, J., & Bruder, S. "Development of the Trevo ProVue Retriever for intracranial clot removal in acute ischemic stroke. Annals of the New York Academy of Sciences, "1329(1), 107-115,2014.
[9] Katz, J. M., Hakoun, A. M., Dehdashti, A. R., Chebl, A. B., Janardhan, V., & Janardhan, V. "Understanding the Radial Force of Stroke Thrombectomy Devices to Minimize Vessel Wall Injury: Mechanical Bench Testing of the Radial Force Generated by a Novel Braided Thrombectomy Assist Device Compared to Laser-Cut Stent Retrievers in Simulated MCA Vessel Diameters. Interventional Neurology,"8(2-6), 206-214,2019.
[10] Shen, X., Yi, H., & Ni, Z. "Effects of stent design parameters on radial force of stent. In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering" (pp. 1712-1716),2008. IEEE.
[11] Rai, A. T., Hogg, J. P., Cline, B., & Hobbs, G. "Cerebrovascular geometry in the anterior circulation: an analysis of diameter, length and the vessel taper. Journal of neurointerventional surgery,"5(4), 371-375,2013.
[12] Johnson, S., Duffy, S., Gunning, G., Gilvarry, M., McGarry, J. P., & McHugh, P. E. "Review of mechanical testing and modelling of thrombus material for vascular implant and device design." Annals of Biomedical Engineering, 45(11), 2494-2508,2017.
[13] Weisel, J. W. "Enigmas of blood clot elasticity. Science,"320(5875), 456-457,2008.
[14] Xie, H., Kim, K., Aglyamov, S. R., Emelianov, S. Y., O’Donnell, M., Weitzel, W. F., ... & Rubin, J. M. "Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging DVT in rats. Ultrasound in medicine & biology," 31(10), 1351-1359,2005.
[15] Chueh, J. Y., Wakhloo, A. K., Hendricks, G. H., Silva, C. F., Weaver, J. P., & Gounis, M. J. "Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. American journal of neuroradiology," 32(7), 1237-1244,2011.
[16] Vidmar, J.,Serša, I., Kralj, E., & Popovič, P."Unsuccessful percutaneous mechanical thrombectomy in fibrin-rich high-risk pulmonary thromboembolism. Thrombosis Journal," 13(1), 1-6,2015.
[17] Kavanagh, E. G., Grace, P. A., McGloughlin, T. M., & Doyle, B. J. " The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties." Journal of biomechanics, 47(6), 1430-1437,2014.
[18] Teng, Z., Feng, J., Zhang, Y., Huang, Y., Sutcliffe, M. P., Brown, A. J., & Lu, Q. "Layer-and direction-specific material properties, extreme extensibility and ultimate material strength of human abdominal aorta and aneurysm: a uniaxial extension study." Annals of biomedical engineering, 43(11), 2745-2759,2015.
[19] Teng, Z., Zhang, Y., Huang, Y., Feng, J., Yuan, J., Lu, Q., & Gillard, J. H. "Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta biomaterialia," 10(12), 5055-5063,2014.
[20] Hodgson, D. E., Ming, W. H., & Biermann, R. J. "Shape memory alloys. ASM International, Metals Handbook,"Tenth Edition., 2, 897-902,1990.
[21] Pelton, A. R., Dicello, J., & Miyazaki, S."Optimisation of processing and properties of medical grade Nitinol wire. Minimally Invasive Therapy & Allied Technologies," 9(2), 107-118,2000.
[22] Otsuka, K., & Kakeshita, T. "Science and technology of shape-memory alloys: new developments. mrs bulletin," 27(2), 91-100,2002.
[23] Tutwiler, V., Singh, J., Litvinov, R. I., Bassani, J.L., Purohit, P.K., & Weisel, J.W. "Rupture of blood clots: Mechanics and pathophysiology. Science Advances,"6(35),2020.
[24] Jarauta, E., Mateo-Gallego, R., Bea, A., Burillo, E., Calmarza, P., & Civeira, F. "Carotid intima-media thickness in subjects with no cardiovascular risk factors. Revista Española de Cardiología (English Edition), " 63(1), 97-102,2010.
[25] 楊珣, "REBOA球囊支架的設計與製作",國立台灣科技大學碩士論文,2019.
[26] 張庭瑋, "腦部取栓支架設計及製程開發",國立台灣科技大學碩士論文,2018.
[27] Okamoto, Y., Tanaka, T., Kobashi, H., Iwasaki, K., & Umezu, M. "In-vitro evaluation method to measure the radial force of various stents. In 13th International Conference on Biomedical Engineering Springer, Berlin, Heidelberg." (pp. 1053-1056),2009.
[28] M. Drexel, G. Selvaduray, A. Pelton,"The Effects of Cold Work and Heat Treatment on the Properties of Nitinol Wire,"2007.

無法下載圖示 全文公開日期 2026/02/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE