簡易檢索 / 詳目顯示

研究生: 潘奕駥
YI-RONG PAN
論文名稱: 以靜電及親和吸附純化分離納豆激酶之研究
Study on Purification and Separation of Nattokinase by Electrostatic and Affinity Adsorption
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 李冠群
Guan-Chiun Lee
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 134
中文關鍵詞: 心血管疾病血栓納豆激酶纖溶酶中空纖維膜切向流過濾系統硫酸銨沉澱陽離子交換樹脂梯度洗脫纖維蛋白溶解法
外文關鍵詞: cardiovascular disease, thrombosis, nattokinase, plasmin, hollow fiber, tangential flow filtration system, ammonium sulfate precipitation, cation exchange resin, gradient elution, fibrinolysis
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病一直都是每年全球前幾名死亡原因之一,而造成這些疾病的原因大多是動脈血栓阻塞,因此在相關的治療中,如何降低以及預防血栓的形成,將是避不開的問題。納豆激酶,存在於日本傳統食品納豆中的其中一個成分,已被證實有極強的血栓溶解能力,相比較其他的血栓溶解試劑,安全性較高、可口服
    食用作為日常營養補充劑,且眾多的藥理特性也使其被視為是當前預防血栓形成的首要選擇。本研究目的在於開發設計出一套簡化且完整從枯草桿菌發酵液中純化出納豆激酶的製程,以供納豆激酶之量產。首先利用中空纖維膜管搭配切向流過濾系統去除由康達生命科學公司所提供的兩批發酵液中之菌體,所得兩批澄清濾液再進行其中所含納豆激酶之分離純化,由於兩次發酵所使用之條件不同,其中所含蛋白質成分亦不同,因此先以硫酸銨飽和度 50%沉澱處理第一批澄清液,再將上清液飽和度調整為 80%,收集沉澱物進行陽離子交換樹脂吸附純化。第二批發酵液則以硫酸銨飽和度 30%去除雜蛋白沉澱物,再將飽和度 80%所收集沉澱物進一步以陽離子交換樹脂及肝素親和樹脂吸附純化,探討以不同 NaCl 濃度從樹脂上洗脫雜蛋白及純化回收納豆激酶。以 0.2微米之中空纖維膜過濾後可獲得完全無菌之濾液,由逆相高效液相層析分析,則檢測不出代謝產物維生素 K2;所得之純化納豆激酶活性,則以纖維蛋白溶解法測定,第一批發酵液所純化得到活性為 105.167 (FU/mg),SDS-PAGE 分析純度約 80 ~ 90%;第二批發酵液以陽離子交換樹脂純化的活性為 276.5 (FU/mg),SDS-PAGE 分析純度約 41.3%,肝素親和樹脂純化得到活性可以達到 292.2 (FU/mg),純度 80%以上。


    Cardiovascular diseases are always on the top causes of death in the world every year, and most of these diseases are caused by arterial thrombosis. Therefore, in related treatments, how to reduce and prevent the formation of thrombosis will be unavoidable problems. Nattokinase, one of the active ingredients in the traditional Japanese food natto, has been proven to have a strong thrombolytic ability. Compared with other thrombolytic reagents, it is safer and can be taken orally as a daily nutritional supplement. Its known pharmacological properties also make nattokinase considered as the first choice for the prevention of thrombosis at present. The purpose of this thesis is to develop and design a simplified and effective process for the purification of nattokinase from Bacillus subtilis fermentation broth that will be feasible for the mass production of nattokinase. First, a 0.2m hollow fiber microfiltration system was employed to completely remove the microorganisms in nattokinase fermentation broth provided by Kangda Life Sciences. The obtained clarified brothes were further used for nattokinase purification. The 1st batch of clarified broth was treated with ammonium sulfate saturation of 50% precipitation to remove the contaminated proteins, then saturation was adjusted to 80% to collect nattokinase containing fraction for further cation exchange resin adsorption. In processing 2nd batch of fermentation broth, ammonium sulfate saturation of 30% was adopted to precipate the impurity proteins, then 80% saturation was again employed to collect nattokinase fraction for cation exchange resin and heparin affinity resin adsorption. By varying NaCl concentrations for eulating the adsorption column, nattokinase could be well purified and recovered. The purified nattokinase activity obtained from 1st fermentation batch as determined by fibrinolysis method was 105.167 (FU/mg), with SDS-PAGE analysis purity was about 90%. From the 2nd batch of fermentation broth, nattiokinase of 276.5 (FU/mg) was IV obtained but with purity about 50%. When heparin affinity resin was employed for purification, nattiokinase activity can reach to 292.2 (FU/mg) with purity > 80%.

    摘要 II Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XV 純化流程名詞與代稱 XVII 第一章 緒論 1 1.1. 前言 1 1.2. 研究目的及內容簡介 4 1.2.1. 研究目的 4 1.2.2. 研究內容 5 第二章 文獻回顧 7 2.1. 血塊與心血管疾病的關聯 7 2.2. 心血管疾病的治療 9 2.2.1. 纖維蛋白溶解酶 10 2.3. 切向流過濾系統 14 2.4. 蛋白鹽析 15 2.5. 離子交換樹脂 17 2.5.1. 陽離子交換樹脂 17 2.5.2. 陰離子交換樹脂 17 2.6. 肝素親和樹脂 21 2.7. 纖溶酶活性分析 24 2.7.1. 纖維蛋白平板法 24 2.7.2. 塊狀纖維蛋白溶解時間法 24 2.7.3. 四肽底物法 25 2.7.4. 酶聯免疫吸附測定法 25 2.7.5. 纖維蛋白降解法 26 2.7.6. 酪蛋白-Folin-酚法 26 第三章 實驗材料與方法 27 3.1. 材料 27 3.1.1. 實驗藥品 27 3.1.2. 實驗儀器 29 3.1.3. 實驗緩衝溶液與試劑 31 3.2. 方法 38 3.2.1. 菌體移除 38 3.2.2. 黃豆過敏原移除 38 3.2.3. Vitamin K2移除 41 3.2.4. 硫酸銨沉澱 44 3.2.5. 離子交換樹脂純化 47 3.2.6. 肝素親和樹脂純化 47 3.2.7. 納豆激酶活性分析 48 第四章 結果與討論 50 4.1. 發酵液中菌體移除 50 4.2. 發酵液中黃豆過敏原移除 51 4.3. 透過10kDa超過濾膜移除發酵液中Vitamin K2 53 4.4. 直接硫酸銨沉澱蛋白質 55 4.5. 離子交換樹脂之納豆激酶純化 58 4.5.1. 清洗未被吸附之蛋白 58 4.5.2. NaCl階梯濃度洗脫 59 4.5.3. NaCl洗脫濃度之優化 66 4.5.4. 納豆激酶純度分析 67 4.6. 肝素親和樹脂之納豆激酶純化 70 4.6.1. 納豆激酶純度分析 71 4.7. 純化產物之納豆激酶活性分析 72 4.7.1. 納豆激酶標準品活性分析 73 4.7.2. 0.22μm中空纖維膜管過濾之濾液中納豆激酶活性分析 74 4.7.3. 硫酸銨沉澱之納豆激酶活性分析 75 4.7.4. 陽離子交換樹脂0.5M NaCl洗脫液中納豆激酶活性分析 76 4.7.5. 陽離子交換樹脂2M NaCl洗脫液中納豆激酶活性分析 77 4.7.6. 第一批發酵液各階段純化後納豆激酶活性總表 78 4.8. 第二批發酵液之納豆激酶純化 80 4.8.1. 第二批發酵液直接硫酸銨沉澱蛋白 80 4.8.2. 第二批發酵液陽離子交換樹脂純化之NaCl階梯濃度洗脫 82 4.8.3. 第二批發酵液納豆激酶純化之活性分析 83 4.8.4. 第二批發酵液各階段純化後納豆激酶活性總表 86 4.8.5. 第二批發酵液肝素親和樹脂之納豆激酶純化 88 第五章 結論 95 5.1. 以0.22μm孔徑過濾去除菌體 95 5.2. 以TFF系統未能有效移除黃豆過敏原 95 5.3. 以10kDa超濾膜去除 Vitamin K2 95 5.4. 以硫酸銨沉澱初步純化 96 5.5. 以陽離子交換樹脂進行蛋白質純化 96 5.6. 以肝素親和樹脂進行蛋白純化 98 5.7. 純化產物活性分析 98 5.8. 蛋白純化製程改善比較 100 5.8.1. 步驟、流程 100 5.8.2. 時間 100 5.8.3. 成本 101 5.9. 納豆激酶純化後續工作內容 101 5.9.1. 納豆激酶活性 101 5.9.2. 大量發酵液(L為單位)的純化 101 第六章 參考文獻 102 第七章 附錄 110 7.1. 流率與剪切力關係圖 110 7.2. 中空纖維薄膜化學耐受性表 113

    1. Wang, C., et al. Purification and characterization of nattokinase from Bacillus subtilis natto B-12. J Agric Food Chem, 2009. 57(20): p. 9722-9.
    2. Yin, L.J., H.H. Lin, and S.T. Jiang. Bioproperties of potent nattokinase from Bacillus subtilis YJ1. J Agric Food Chem, 2010. 58(9): p. 5737-42.
    3. Selvarajan, E. and N. Bhatnagar. Nattokinase: an updated critical review on challenges and perspectives. Cardiovasc Hematol Agents Med Chem, 2017.
    4. Cannon, B. Cardiovascular disease: Biochemistry to behaviour. Nature, 2013. 493(7434): p. S2-S3.
    5. Sumi, H., Hamada, H., Nakanishi, K., & Hiratani, H. Enhancement of the Fibrinolytic Activity in Plasma by Oral Administration of Nattokinases. Acta Haematologica, 84(3), 139–143, 1990.
    6. Cho, Y.H., et al. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. N Biotechnol, 2010. 27(4): p. 341-6.
    7. Hong-Bo Hu1, S.-J.Y., ,Le-He Mei1,Zi-Qiang Zhu1 & Byung-Ki Hur2. Partial purification of nattokinase from Bacillus subtilis by expanded bed. Biotechnology Letters, 2000.
    8. Liu, J. G., Xing, J. M., Chang, T. S., Liu, H. Z. Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio. Bioprocess Biosyst Eng, 2006. 28(4): p. 267-73.
    9. GAO Da-hai, MEI Le-he, SHENG Qing, XU Jing, LIN Dong-qiang, YAO Shan-jing. Separation and purification of nattokinase produced by Bacillus subtilis with ammonium sulfate precipitation and chromatography. Journal of Chemical Engineering of Chinese Universities 2006.
    10. Bridge, K.I., H. Philippou, and R. Ariens. Clot properties and cardiovascular disease. Thromb Haemost, 2014. 112(5): p. 901-8.
    11. Chernysh, I.N., et al. Fibrin clots are equilibrium polymers that can be remodeled without proteolytic digestion. Sci Rep, 2012. 2: p. 879.
    12. Litvinov, R.I., et al. Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. 2005. 106(9): p. 2944-2951.
    13. Palasubramaniam, J., X. Wang, and K. Peter. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol, 2019. 39(8): p. e176-e185.
    14. Lippi, G., M. Franchini, and G. Targher. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol, 2011. 8(9): p. 502-12.
    15. Sabu, S.S.K.a.A. Advances in Experimental Medicine : Fibrinolytic Enzymes for Thrombolytic Therapy(P.345-P.381). Advances in Experimental Medicine 2019.
    16. Bivard, A., L. Lin, and M.W. Parsonsb, Review of stroke thrombolytics. J Stroke, 2013. 15(2): p. 90-8.
    17. Barreto, A.D. Intravenous thrombolytics for ischemic stroke. Neurotherapeutics, 2011. 8(3): p. 388-99.
    18. Banerjee, A., Y. Chisti, and U.C. Banerjee, Streptokinase--a clinically useful thrombolytic agent. Biotechnol Adv, 2004. 22(4): p. 287-307.
    19. Sikri N, B.A. A History of Streptokinase Use in Acute Myocardial Infarction. Tex Heart Inst J, 2007.
    20. O. Matsuo, D.C.R.D.C., Matsuo, O., Rijken, D. & Collen, D. Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature 291, 590–591 1981.
    21. Dillon, G. M., Stevens, S., Dusenbury, W. L., Massaro, L., Toy, F., Purdon, B. Choosing the Correct "-ase" in Acute Ischemic Stroke: Alteplase, Tenecteplase, and Reteplase. Adv Emerg Nurs J, 2019. 41(3): p. 271-278.
    22. Gurewich V, P.R., Simmons-Byrd A, Sarmientos P, Liu J-N, Badylak SF. Thrombolysis vs bleeding from hemostatic sites by a prourokinase mutant. J Thromb Haemost, 2006.
    23. Lijnen, H.R., et al. Activation of plasminogen by pro-urokinase. I. Mechanism. Journal of Biological Chemistry, 1986. 261(3): p. 1253-1258.
    24. El-Gengaihy, A.E., et al., 6.34 - Thrombolytics, in Comprehensive Medicinal Chemistry II, J.B. Taylor and D.J. Triggle, Editors. 2007, Elsevier: Oxford. p. 763-781.
    25. Liya Davydov, P., l and Judy WM. Cheng, PharmD, BCPS1p2. Tenecteplase : A Review. Mount Sinai Medical Center; New York, and Amold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, 2001.
    26. Noble, S. and D. McTavish. Reteplase. Drugs, 1996. 52(4): p. 589-605.
    27. Simpson, D., et al., Reteplase. American Journal of Cardiovascular Drugs, 2006. 6(4): p. 265-285.
    28. Krätzschmar, J., et al. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: cloning and expression. Gene, 1991. 105(2): p. 229-237.
    29. Bringmann, P., et al. Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem, 1995. 270(43): p. 25596-603.
    30. Wu, H., et al. Acute toxicity and genotoxicity evaluations of Nattokinase, a promising agent for cardiovascular diseases prevention. Regul Toxicol Pharmacol, 2019. 103: p. 205-209.
    31. Fujita, M., et al. Purification and Characterization of a Strong Fibrinolytic Enzyme (Nattokinase) in the Vegetable Cheese Natto, a Popular Soybean Fermented Food in Japan. Biochemical and Biophysical Research Communications, 1993. 197(3): p. 1340-1347.
    32. Yanagisawa, Y., et al. X-ray structure determination and deuteration of nattokinase. Journal of Synchrotron Radiation, 2013. 20(6): p. 875-879.
    33. Zheng, Z.-l., et al. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Biochemical Journal, 2006. 395(3): p. 509-515.
    34. Li Tian, W.Z.a.Y.Z. Construction of a genetically engineered strain of its fibrionlytic activity. African Journal of Microbiology Research, 2019.
    35. Dabbagh, F., et al. Nattokinase: production and application. Appl Microbiol Biotechnol, 2014. 98(22): p. 9199-206.
    36. Fujita, M., et al. Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis, 1995. 9(3): p. 157-164.
    37. Jang, J.-Y., et al. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. lar, 2013. 29(4): p. 221-225.
    38. Urano, T., et al. The Profibrinolytic Enzyme Subtilisin NAT Purified from Bacillus subtilis Cleaves and Inactivates Plasminogen Activator Inhibitor Type 1. Journal of Biological Chemistry, 2001. 276(27): p. 24690-24696.
    39. Tai, M.-W. and B.V. Sweet, Nattokinase for prevention of thrombosis. American Journal of Health-System Pharmacy, 2006. 63(12): p. 1121-1123.
    40. Hsia, C.-H., et al. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutrition Research, 2009. 29(3): p. 190-196.
    41. Herterich, J.G., et al. Optimizing the operation of a direct-flow filtration device. Journal of Engineering Mathematics, 2017. 104(1): p. 195-211.
    42. Duong-Ly, K.C. and S.B. Gabelli. Chapter Seven - Salting out of Proteins Using Ammonium Sulfate Precipitation, in Methods in Enzymology, J. Lorsch, Editor. 2014, Academic Press. p. 85-94.
    43. Green, A.A. and W.L. Hughes, Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents, in Methods in Enzymology. 1955, Academic Press. p. 67-90.
    44. Scopes, R.K. Protein purification: principles and practice. 1993: Springer Science & Business Media.
    45. McKenzie, H., R.J.b.R.D. Dawson, DC Elliott, WH Elliott,, and C.P. KM Jones, Oxford. Data for Biochemical Research. 1969.
    46. Yamamoto, S., K. Nakanishi, and R. Matsuno. Ion-exchange chromatography of proteins. 1988: CRC Press.
    47. Coffey, A., et al. Purification and applications of bacteriophage lytic enzymes. 2012. p. 117-146.
    48. Ahamed, T., et al. pH-gradient ion-exchange chromatography: An analytical tool for design and optimization of protein separations. Journal of Chromatography A, 2007. 1164(1): p. 181-188.
    49. Bahadir, O. Ion-Exchange Chromatography and Its Applications, in Column Chromatography. 2013.
    50. Shriver, Z., et al. Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handbook of experimental pharmacology, 2012(207): p. 159-176.
    51. Zhang, F., J. Zhang, and R.J. Linhardt. Interactions between nattokinase and heparin/GAGs. Glycoconj J, 2015. 32(9): p. 695-702.
    52. Peysselon, F. and S. Ricard-Blum. Heparin–protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis. Matrix Biology, 2014. 35: p. 73-81.
    53. Zhang, F., J. Zhang, and R.J. Linhardt. Interactions between nattokinase and heparin/GAGs. Glycoconjugate journal, 2015. 32(9): p. 695-702.
    54. Wu, H., et al. Nattokinase-heparin exhibits beneficial efficacy and safety—an optimal strategy for CKD patients on hemodialysis. Glycoconjugate Journal, 2019. 36(2): p. 93-101.
    55. FA Yun, Z.J., ZHAO Haijie, LIU Huizhou. Progress in separation and purification of nattokinase and its enzyme activity determination. chinese journal of chromatography, 2019.
    56. Astrup, T. and S. Müllertz. The fibrin plate method for estimating fibrinolytic activity. Archives of Biochemistry and Biophysics, 1952. 40(2): p. 346-351.
    57. Haverkate, F. A Simple Device for Measuring Diameters of Fibrinolysis Zones on Fibrin Plates. Pathophysiology of Haemostasis and Thrombosis, 1972. 1(1): p. 55-60.
    58. Haverkate, F., D.J.T. Traas, and Haemostasis. Dose-response Curves in the Fibrin Plate Assay Fibrinolytic Activity of Proteases. 1974. 32(05/06): p. 356-365.
    59. Panes, O., et al. Clot lysis time in platelet-rich plasma: Method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid. Platelets, 2012. 23(1): p. 36-44.
    60. Lucy, J., et al. Clot Lysis Activity of Bacillus subtilis G8 Isolated from Japanese Fermented Natto Soybeans. Applied Food Biotechnology, 2019. 6(2): p. 101-109.
    61. Yuki, Y., et al. A Sandwich Enzyme-linked Immunosorbent Assay for Nattokinase. Bioscience, Biotechnology, and Biochemistry, 1994. 58(2): p. 366-370.
    62. Yin, L.-J., H.-H. Lin, and S.-T. Jiang. Bioproperties of Potent Nattokinase from Bacillus subtilis YJ1. Journal of Agricultural and Food Chemistry, 2010. 58(9): p. 5737-5742.
    63. Chang, C.-T., et al. Potent Fibrinolytic Enzyme from a Mutant of Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 2000. 48(8): p. 3210-3216.
    64. FA Yun, ZHANG Jinling, ZHAO Haijie, LIU Huizhou. Progress in separation and purification of nattokinase and its enzyme activity determination[J]. Chinese Journal of Chromatography, 2019, 37(3) 274-278.
    65. Ravi Shankar, S.D., Nandhi Prabhu, Gajendran T. A REVIEW ON SUCCESSIVE GENERATIONS OF NATTOKINASE BASED FIBRINOLYTIC AGENT. EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH, 2019.
    66. Tran Quoc Tuan, D.T.L.A., Le Thi Thuy Ai, Dinh Minh Hiep, Tran Cat Dong. Purification and thrombolytic effects in vivo of recombination Nattokinase on carrageenan-induced tail thrombosis in a rat model. Tran Quoc Tuan et al. Ho Chi Minh City Open University Journal of Science, 2018.
    67. Hong-Bo Hu, Shan-Jing Yao,Le-He Mei1,Zi-Qiang Zhu & Byung-Ki Hur. Partial purification of nattokinase from Bacillus subtilis by expanded bed. Biotechnology Letters 22: 1383–1387, 2000.
    68. Hu, Y., et al. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Sci Rep, 2019. 9(1): p. 9235.
    69. Garg, R. and B.N. Thorat, Nattokinase purification by three phase partitioning and impact of t-butanol on freeze drying. Separation and Purification Technology, 2014. 131: p. 19-26.
    70. Yao, Z., et al. Properties of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens RSB34, Isolated from Doenjang. J Microbiol Biotechnol, 2017. 27(1): p. 9-18.
    71. Chang, C.-T., et al. Potent Fibrinolytic Enzyme from a Mutant of Bacillus s ubtilis IMR-NK1. 2000. 48(8): p. 3210-3216.
    72. Masada, M.J.F.s. Determination of the thrombolytic activity of Natto extract. 2004. 8(1): p. 92-95.

    無法下載圖示 全文公開日期 2032/08/22 (校內網路)
    全文公開日期 2032/08/22 (校外網路)
    全文公開日期 2032/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE