簡易檢索 / 詳目顯示

研究生: 王賡銓
KENG-CHUAN WANG
論文名稱: 分子量對聚甲基丙烯酸甲酯奈米泡孔材料泡孔型態的影響
Influence of Molecular Weight on Cell Morphology of Poly(methyl methacrylate) Nanocellular Foam
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 鄭智嘉
Chih-Chia Cheng
朱建嘉
Chien-Chia Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 聚甲基丙烯酸甲酯二氧化碳二步發泡法分子量
外文關鍵詞: PMMA,Poly(methyl methacrylate), CO2,carbon dioxide, 2-step foaming, Molecular weight
相關次數: 點閱:288下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗將三種不同分子量的PMMA,以固定壓力,不同含浸溫度含浸後再以不同溫度進行發泡,可以得到奈米泡孔結構,我們將其結果製表。得到類似於下限臨界溶解溫度(lower critical solution temperature, LCST)的相圖,本實驗發現除了發泡參數等等會影響發泡結果,更有機會利用調配PMMA的分子量不必以極端的含浸溫度去製備奈米泡材。
另外,本實驗也嘗試將固態物理發泡法改以大型發泡槽含浸,並且進行放大式的製程。結果顯示,除非克服熱傳以及發泡中樣品內部應力不均衡的問題,樣品勢必發生變形乃至於破裂的情形,並且難以製備出完整的奈米泡材。目前最有可能的作法是限制其發泡空間的手法,但會仍然會有影響發泡結果的問題在,可以藉由此方向再進行研究。


In this experiment, three PMMA with different molecular weights were saturated and foaming using different temperatures. Nanocellular foam was obtained. It was found that molecular weight is one of the critical factors that affects the foam structure.
In addition, bulk sized nanocellular foam was created. The results show that unless the heat transfer and internal stresses issues could be resolved, samples would deform or even rupture. Another possible way of generating nanocellular structure is by confining the sample in cage. A flat and foamed PMMA sample was obtained.

目錄 摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 前言 1 第二章 相關理論與文獻回顧 2 2.1 熱塑性高分子聚甲基丙烯酸甲酯 2 2.2 高分子組成分析與NMR原理 3 2.3 高分子發泡材料 4 2.3.1高分子泡材的孔徑 5 2.3.2發泡方法 5 2.2.3高分子對二氧化碳溶解度的測量及影響 7 2.3.4 物理發泡法 9 2.3.5泡孔生成機制 12 2.3.6不同發泡型態介紹 17 第三章 實驗方法 18 3.1 實驗藥品 18 3.2 實驗儀器 21 3.3 實驗流程及步驟 23 3.3.1 實驗流程圖 23 3.3.2 溶解度測量 24 3.3.3 射出成型 25 3.3.4 批次發泡 26 3.3.5 批式發泡-大型發泡槽 27 3.3.6 批式發泡-大型熱壓發泡 28 3.4 測試方法 29 3.4.1. 示差掃描量熱儀(DSC) 29 3.4.2. 核磁共振儀(NMR) 30 3.4.3. 高效能高分子核心系統(APC) 30 3.4.4. 熔融指數儀(MI) 30 3.4.5. 密度測量 31 3.4.6. 發射雙束型聚焦離子束顯微鏡(FIB) 31 3.4.7. 泡孔孔徑計算(cell size) 32 3.4.8. 泡孔密度計算(cell density) 32 3.4.9. 表面積及孔徑分析儀(BET) 33 第四章 結果與討論 34 4.1 材料性質 34 4.2 PMMA發泡結果探討 35 4.2.1 PMMA因為分子量產生不同的發泡型態 35 4.2.2 UCST與LCST之討論 36 4.2.4 不同分子量溫度掃描實驗的型態探討 37 4.3 BET檢測結果 43 4.4 大型圓板發泡實驗 44 4.4.1應力殘留以及發泡導致變形 44 4.4.2射出成形圓板發泡結果分析 48 第五章 結論 50 未來展望 51 參考文獻 52 附錄 59

1. J. E. Martini-Vvedensky, N. P. Suh, and F. A. Waldman, Microcellular closed cell foams and their method of manufacture US4,473,665
2. G. Dong, G. Zhao, Y. Guan, G. Wang, and X. Wang , The cell forming process of microcellular injection-molded parts. Journal of Applied Polymer Science, 2014. 131(12), 40365
3. D. Miller, and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. Tensile and impact properties. Polymer, 2011. 52(13): p. 2910-2919.
4. B. Krause, Ultra low-k dielectrics made by supercritical foaming of thin ploymer films. Advanced Materials 2002. 14(15): p. 1041-1046
5. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, and P. Sonntag, Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science, 2015. 41: p. 122-145.
6. Horizon 2020 Work Programme
https://ec.europa.eu/programmes/horizon2020/en/official-documents
節錄自以下
J. Pinto, M. Dumon, and M.A. Rodriguez-Perez, “Nanoporous polymer foams from nanostructured polymer blends: preparation, characterization, and properties, in recent developments in polymer macro, micro and nano blends” edited by G. Markovic and D. Pasquini, Woodhead Publishing. 2017 p. 237-288.
7. N. Pal, and A. Bhaumik, Mesoporous materials: Versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Advances, 2015. 5(31): p. 24363-24391.
8. H. P. Hentze, and M. Antonietti, Template synthesis of porous organic polymers. Current Opinion in Solid State and Materials Science, 2001. 5(4): p. 343-353.
9. J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D.Y. Yoon, and M. Trollsås, Templating Nanoporosity in Thin-Film Dielectric Insulators. Advanced Materials, 1998. 10(13): p. 1049-1053.
10. S. Ma, Y. Wang, Z. Min, and L. Zhong, Nano/mesoporous polymers based low-k dielectric materials: A review on methods and advances. Advances in Polymer Technology, 2013. 32(3) 21358
11. D. A. Olson, L. Chen, and M.A. Hillmyer, Templating nanoporous polymers with ordered block copolymers. Chemistry of Materials, 2008. 20(3): p. 869-890.
12. H. Janani, and M.H.N. Famili, Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers. Polymer Engineering and Science, 2010. 50(8): p. 1558-1570.
13. 廖宗恩, 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材。碩士論文,化學工程研究所,國立臺北科技大學105.
14. J. Schwarcz, The Right Chemistry: 108 Enlightening, Nutritious, Health-Conscious and Occasionally Bizarre Inquiries into the Science of Daily Life. Doubleday Canada 2012
15. 林建中,周宗華, 高分子材料. 2002: 新文京開發出版股份有限公司.
16. 謝俊雄, 塑膠工程學. 1991: 文京圖書.
17. 賴耿陽, 塑膠大全. 2005: 台灣復文興業股份有限公司.
18. U. Ali, K.J.B.A. Karim, and N.A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
19. S. Costeux, I. Khan, S. P. Bunker, and H. K. Jeon, Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics, 2015. 57(2): p. 197-221.
20. L. G. Wade, Organic chemistry. 8th edition 2013, Boston: Pearson.
21. J. P. Hornak ,Science, Basics of NMR. 1997: Rochester Institute of Technology, Center for Imaging Science.
22. Polymer Foam Market by Type (PU, PS, PO, PVC, Phenolic, Melamine), End-Use Industry (Building & Construction, Packaging, Automotive, Furniture & Bedding, Footwear, Sports & Recreational), and Region - Global Forecast to 2022 : marketsandmarkets.com
23. J. Pinto, M. Dumon, and M.A. Rodriguez-Perez, “Nanoporous polymer foams from nanostructured polymer blends: Preparation, characterization, and properties, in Recent Developments in Polymer Macro, Micro and Nano Blends” edited by G. Markovic and D. Pasquini, Woodhead Publishing. 2017 p. 237-288.
24. V. Kumar, and N.P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 30(20): p. 1323-1329.
25. V. Kumar, Process synthesis for manufacturing microcellular thermoplastic parts: a case study in axiomatic design, Ph.D. Dissertation, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 1988.
26. M. Shimbo, I. Higashitani, and Y. Miyano, Mechanism of strength improvement of foamed plastics having fine cell. Journal of Cellular Plastics, 2007. 43(2): p. 157-167.
27. K. Nadella, and V. Kumar, Tensile and flexural properties of solid-state microcellular ABS panels. Experimental Analysis of Nano and Engineering Materials and Structures, 2007: p. 765-766.
28. V. Kumar, M. Vander Wel, J. Weller, and K. A. Seeler, Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994. 116(4): p. 439-445.
29. V. Kumar, J. E. Weller, M. Ma, R. Montecillo, and R. R. Kwapisz, The effect of additives on microcellular PVC foams: Part 2 - Tensile behaviour Cellular Polymers, 1998. 17(5): p. 350-361.
30. H. P. Hentze, and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications. Reviews in Molecular Biotechnology, 2002. 90(1): p. 27-53.
31. D. Wu, F. Xu, B. Sun, R. Fu, H. He, and K. Matyjaszewski, Design and preparation of porous polymers. Chemical Reviews, 2012. 112(7): p. 3959-4015.
32. M. Nigel, Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide, Butterworth-Heinemann 2007: p. 562.
33. D. Klempner, V. Sendijarevic, and R.M. Aseeva, Handbook of Polymeric Foams and Foam Technology. Hanser Publishers, 2004.
34. 何繼敏, 新型聚合物發泡材料及技術.化學工業出版社. 2008
35. F. J. Norton, Diffusion of Chlorofluorocarbon Gases in Polymer Films And Foams. Journal of Cellular Plastics, 1982. 18(5): p. 300-315.
36. J. E. Oliver, Kyoto Protocol, in Encyclopedia of World Climatology, edited by J.E. Oliver, 2005, Springer Netherlands: Dordrecht. p. 443-443.
37. Y. Sato, K. Fujiwara, T. Takikawa, T. S. Sumarno, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 1999. 162(1-2): p. 261-276.
38. D. M. Newitt, and K.E. Weale, Solution and diffusion of gases in polystyrene at high pressures. Journal of the Chemical Society (Resumed), 1948: p. 1541-1549.
39. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, and H. Masuoka, Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 1996. 125(1-2): p. 129-138.
40. J. Crank, The Mathematics of Diffusion 2nd edition, Gloucestershire : Clarendon Press. 1975
41. M. Perez-Blanco, J.R. Hammons, and R.P. Danner, Measurement of the solubility and diffusivity of blowing agents in polystyrene. Journal of Applied Polymer Science, 2010. 116(4): p. 2359-2365.
42. J. Pinto, J. Reglero-Ruiz, M. A. Dumon, M. A. Rodriguez-Perez., Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. The Journal of Supercritical Fluids, 2014. 94: p. 198-205.
43. M. Pantoula, and C. Panayiotou, Sorption and swelling in glassy polymer/carbon dioxide systems: Part I. Sorption. Journal of Supercritical Fluids, 2006. 37(2): p. 254-262.
44. C. C. Hu, C. Y. Tu, Y. C. Wang, C. L. Li, K. R. Lee, and J. Y. Lai, Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas-separation membranes. Journal of Applied Polymer Science, 2004. 93(1): p. 395-401.
45. T. S. Chow, Molecular Interpretation of the Glass Transition Temperature of Polymer-Diluent Systems. Macromolecules, 1980. 13 (2), pp 362–364.
46. R. Li, Z. Zhang, and T. Fang, Experimental research on swelling and glass transition behavior of poly(methyl methacrylate) in supercritical carbon dioxide. The Journal of Supercritical Fluids, 2016. 110: p. 110-116.
47. K. T. Okamoto, Microcellular Processing. Munich: Hanser Publishers. 2003
48. S. Costeux, CO2-Blown Nanocellular Foams. J. Journal of Applied Polymer Science ., 2014. 131(23) 41293
49. K. Taki, Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chemical Engineering Science, 2008. 63(14): p. 3643-3653.
50. C. Barlow, V. Kumar, B. Flinn, R.K. Bordia, and J. Weller, Impact Strength of High Density Solid-State Microcellular Polycarbonate Foams. Journal of Engineering Materials and Technology, 2001. 123(2): p. 229.
51. L. Urbanczyk, C. Calberg, C. Detrembleur, C. Jérôme, and M. Alexandre, Batch foaming of SAN/clay nanocomposites with scCO2: A very tunable way of controlling the cellular morphology. Polymer, 2010. 51(15): p. 3520-3531.
52. C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
53. D. L. Tomasko, et al., A review of CO2 applications in the processing of polymers. Industrial & Engineering Chemistry Research, 2003. 42(25): p. 6431-6456.
54. L. M. Matuana, C.B. Park, and J.J. Balatinecz , Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1998. 38(11): p. 1862-1872.
55. M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science, 2011. 36(6): p. 749-766.
56. S. Li, G. He, X. Liao, C. B. Park, Q. Yang, and G. Li, Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Advances, 2017. 7(11): p. 6266-6277.
57. Y. C. Li, R. P. Shi, C. P. Wang, X. J. Liu, and Y. Wang, Phase-field simulation of thermally induced spinodal decomposition in polymer blends. Modelling and Simulation in Materials Science and Engineering, 2012. 20(7).
58. L. Robeson, Historical Perspective of Advances in the Science and Technology of Polymer Blends. Polymers, 2014. 6(5): p. 1251-1265.
59. S. Sarkar, S. Banerjee, S. Roy, R. Ghosh, P. P. Ray, and B. Bagchi,, Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition. Journal of Chemical Sciences, 2015. 127(1): p. 49-59.
60. J. W. Cahn, Phase Separation by spinodal decomposition in isotropic systems. The Journal of Chemical Physics, 1965. 42(1): p. 93-99.
61. R. L. S. Konynenburg, Critical lines and phase equilibria in binary van der Waals mixtures. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1980. 298(1442): p. 495-540.
62. I. W. Hamley, Introduction to Soft Matter: Synthetic and Biological Self-Assembling Materials. Wiley. 2008
63. J. S. Colton, and N.P. Suh, The Nucleation of Microcellular Thermoplastic Foam With Additives: Part I: Theoretical Considerations. Polymer Engineering and Science, 1987. 27(7): p. 485-492.
64. Y. I. Chang, W.Y. Cheng, and L. Jang, A novel method of making PVF porous foam without using the pore forming agent. Journal of Applied Polymer Science, 2014. 132(1). 41270
65. L. P. McMaster, Aspects of Liquid-Liquid Phase Transition Phenomena in Multicomponent Polymeric Systems, in Copolymers, Polyblends, and Composites. 1975, American Chemical Society p. 43-65.
66. M. Hatanaka, and H. Saito, In-situ investigation of liquid−liquid phase separation in polycarbonate/carbon dioxide system. Macromolecules, 2004. 37(19): p. 7358-7363.
67. J. Maruta, T. Ougizawa, and T. Inoue, LCST-type phase behaviour and extremely slow demixing phenomenon in polymer blends of poly(acrylonitrile-co-styrene) and poly(maleic anhydride-co-styrene). Polymer, 1988. 29(11): p. 2056-2060.
68. J. Pigłowski, H.W. Kammer, and J. Kressler, Phase dissolution in polymer blends at different quench depths. Polymer, 1989. 30(9): p. 1705-1708.
69. S. P. Nunes, and T. Inoue, Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. Journal of Membrane Science, 1996. 111(1): p. 93-103.
70. H. Guo, A. Nicolae, and V. Kumar, Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: Low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer, 2015. 70: p. 231-241.
71. H. Guo, and V. Kumar, Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer, 2015. 56: p. 46-56.
72. K. Endo, T. Ida, S. Shimada, J. V. Ortiz, K. Deguchi, T. Shimizu, and K. Yamada, Valence XPS, IR, and C13 NMR spectral analysis of 6 polymers by quantum chemical calculations. Journal of Molecular Structure, 2012. 1027: p. 20-30.
73. A. R. Shultz, and P.J. Flory, Phase Equilibria in Polymer—Solvent Systems1,2. Journal of the American Chemical Society, 1952. 74(19): p. 4760-4767.
74. K. Terao, M. Okumoto, Y. Nakamura, T. Norisuye, and A. Teramoto, Light-scattering and phase-separation studies on cyclohexane solutions of four-arm star polystyrene. Macromolecules, 1998. 31(20): p. 6885-6890.

QR CODE