簡易檢索 / 詳目顯示

研究生: 王偉仲
Wei-chung Wang
論文名稱: 固態電解質微波優化與薄型化感測器特性研究
Investigation of microwave optimized electrolyte and thin film sensor property
指導教授: 周振嘉
Chen-chia Chou
口試委員: 蔡大翔
Dah-shyang Tsai
段維新
Wei-hsing Tuan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 電解質氧化鋯固態氧化物燃料電池離子導電奈米薄膜微波處理氧氣感測器極限電流
外文關鍵詞: electrolyte, zirconia, SOFC, ionic conductivity, nano-thin film, microwave treatment, oxygen sensor, limit current
相關次數: 點閱:318下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釔安定氧化鋯(YSZ)與氧化釓摻雜氧化鈰(GDC)材料,因其具有較佳的抗還原性及優異的機械性質,為目前工業界最常應用在固態氧化物燃料電池(SOFC)與含氧感知器的氧離子導體,可使元件具有一定程度的可靠度(reliability)。但由於需要在很高的工作溫度且長時間操作,因此本實驗以微波方式進行電解質的優化,運用微波的非熱活化機制[43-50],探討以微波場促進材料中晶格振動,提升離子或點缺陷遷移率,運用這層關係降低本身的操作溫度並提升氧離子的擴散速率。結果顯示YSZ電解質以微波優化在300oC時將離子導電率提升約38倍。而低溫微波熱處理對GDC電解質的影響也將在本文中討論。
    本研究的另一課題,使用射頻式-磁控濺鍍製作奈米8 mol.%釔安定氧化鋯薄膜於矽(100)單晶基板與氧化矽基板上,反應氣體Ar:O2比為25: 5 (s.c.c.m)環境下,探討薄膜的微觀、結晶性和基材匹配性,並利用交流阻抗分析儀,量測室溫下的離子導電率。同時,藉由穿透式電子顯微鏡觀察奈米8YSZ薄膜與矽(100)單晶基板界面微觀,模擬其晶體結構匹配性、界面應力與空缺分佈為了瞭解8YSZ薄膜化是否有助於離子導電率的提升。
    根據文獻中,J. G. Barriocanal等人的研究[22],將YSZ以人工超晶格的方式成長於STO基板,其聲稱,若將YSZ電解質奈米化,能使離子導電率獲得爆炸性的提升,主張藉由異質方式成長,使得界面處存在著高濃度的氧空缺。但是X.Guo則對其文章發表評論[23],認為並無有力證據證明界面處存在非序化的空缺,且認為離子導特性之優異主要貢獻是來自於P型STO基板,因此不可以忽略基板在電性量測上的貢獻。而本研究則是成長奈米薄膜YSZ於矽基板,利用半導基材的特性,以局部性電場趨迫氧離子的遷移,使離子導獲得大幅度得提升。我們以白金電極/YSZ薄膜/白金電極通以氣氛,以極限電流響應的程度,釐清YSZ/Si複合層中的導電機制。這是目前其他文獻所沒有使用的方式,我們希望以這種極限電流響應的方式,利用半導特性的基板,引導出奈米電解質薄膜中的氧離子,並且使其在室溫下工作的氧氣感測器。


    Yttria stabilized zirconia (YSZ) and gadolinia doped ceria (GDC) are common electrolytes for applications in ionic conductor of oxygen sensor or solid oxide fuel cell (SOFC) because of their outstanding reduction-resistances, better mechanical properties and reliability than other electrolytes. But their operation temperatures are too high to enhance their evaluation. In this work, we report that a microwave process could enhance ionic conductivity, showing up to 38 times at 300oC, in YSZ specimen. Huge enhancement of ionic conductivity in YSZ is observed by using in-situ microwave emission -ionic conductivity measurement and maintains the highest value after heat treatment. In this case the effect is shown to depend upon the ionic diffusion and polarization phenomena. Different results on the morphology of the microwave induced conductivity in mixed conductor GDC specimen are also presented. This is a direct experimental confirmation of the theory that suggests a mechanism of nonthermal influence of high frequency electromagnetic field on charge and mass transport in solids. The microwave radiation generates a nonthermal phonon distribution in the poly-crystalline lattice and thereby enhances the mobility of crystal lattice ions. This leads to significant reduce the operation temperature and enhance oxygen diffusion. It is also good for developing a new technique to disrupt oxygen vacancy association and elemental clustering, through the intrinsic mobility of point defects to transform the micro-domains to nano-size by microwave treatment.
    The other part of this research was using Magnetron-sputtering to sputter 8mol% Yttria-stabilized Zirconia (YSZ) in p-type silicon (100) and silica substrate. The reaction gas ratio Ar: O2=25:5 (s.c.c.m). According to some researches, Garcia-Barriocanal et al. [22] claimed that the enhancement of the conductivity in nano-YSZ film is observed, along with a YSZ layer thinkness-independent conductance, showing that it is attributed to the high oxygen vacancy concentration and the high mobility at the YSZ/STO interfaces. But, Xin Guo [23] argued that the claimed ionic conductivity lacks experimental support and that the observed conductivity enhancement is most probably due to the p-type conductivity of substrates. We report electrical manipulation of oxygen ion migration in a nano-YSZ film, in which localized electronic field of the p-type conductivity of substrates are responsible for the huge ionic conductivity enhancement. Sudden enhancement of the current sensing property of the Pt electrode/ nano-YSZ film/ Pt electrode planar structure was also observed to separate the conductivity mechanism for the YSZ/ substrate di-layer composites. The relative current at which localized potential field occurs can be manipulated by modifying the substrates conductivity through application of electric fields in a di-layer structure. Electrically assisted ionic conductivity has been demonstrated through the effect of substrate. This electrical manipulation offers functionality not previously accessible based on the interface process in nano-YSZ film/ semi-conductor substrate and may become useful for enhancing ionic conductivity of nanoscale YSZ film for oxygen sensor working at room temperature.

    中文摘要………………………………………………………………………………I 英文摘要……………………………………………………………………………..III 誌謝…………………………………………………………………………………...V 目錄..………………………………………………………………………………VII 圖索引………………………………………………………………………………..X 表索引……………………………………………………………………………...XV 第一章 緒論…………………………………………………………………………..1 第二章 文獻回顧……………………………………………………………………..3 2-1固態電解質材料簡介…………………………………………………..……3 2-1-1電解質傳導原理…………………………………………………...…3 2-1-2氧化鋯基電解質結構、導電特性…………………………..…....4 2-1-3氧化鈰基電解質………………………………………………..…....8 2-2固態電解質材料發展現況………………………………………………….9 2-3研究動機與目的…………………………………………………………14 2-4氧氣感測器簡介………………………………………………………........15 2-4-1電阻式氧氣感測器………………………………………………….15 2-4-2電流式氧氣感測器………………………………………………..16 2-5微波燒結(Microwave sintering)的應用…………………………………18 2-6交流阻抗法………………………………………………………………23 2-6-1交流阻抗原理簡介………………………………………………..23 2-6-2固態電解質之EIS應用;等效電路……………………………..28 第三章 實驗方法…………………………………………………………………....30 3-1實驗藥品規格及儀器總表……………………………………………….30 3-2實驗流程………………………………………………………………….32 3-3試片製備及分析儀器介紹……………………………………………….34 3-3-1微波燒結爐與微波感受體(susceptor)的設計……………………34 3-3-2磁控式濺鍍系統(Magnetron sputtering system)………………….35 3-3-3 XRD繞射分析……………………………………………………..36 3-3-4 SEM表面影像分析………………………………………………..36 3-3-5 X光射線電子能譜分析儀(XPS)………………………………….37 3-3-6 TEM微結構之分析………………………………………………..37 3-3-7電性之分析………………………………………………………..38 第四章 微波優化手法提升固態電解質離子導電率………………………………42 4-1臨場微波熱處理對釔安定氧化鋯電解質……………………………….42 4-1-1 8YSZ相結構分析………………………………………………….42 4-1-2臨場微波熱處理對釔安定氧化鋯電解質離子導電率之影響……43 4-2 臨場微波熱處理對氧化釓摻雜氧化鈰電解質離子導電率之影響…….49 第五章 奈米8YSZ電解質薄膜研製並用於氧氣感測器特性探討……………….51 5-1磁控濺鍍成長8YSZ薄膜於單晶矽基板(P type-Silicon)..........................51 5-1-1 8YSZ薄膜濺鍍成長於Si(100)之繞射分析………………………...51 5-1-2 8YSZ薄膜濺鍍成長於Si(100)之成份分析…………………...……52 5-1-3 8YSZ薄膜濺鍍成長於Si(100)之微觀分析.......................................54 5-1-4不同厚度之8YSZ薄膜成長於矽基材對離子導電率之影響………56 5-1-5界面模擬與穿透式電子顯微鏡微觀分析…………………………..63 5-2磁控濺鍍成長8YSZ薄膜於氧化處理之單晶矽基板................................66 5-2-1 8YSZ薄膜濺鍍成長於氧化處理後的Si(100)之繞射分析...............66 5-2-2 8YSZ薄膜濺鍍成長於氧化處理後的Si(100)之微觀分析...............67 5-2-3不同厚度之8YSZ薄膜成長於氧化矽基材對離子導電率之影響…69 5-3氣體感測器測試……………………………………………………..……..75 5-3-1 極限電流試驗………………………………………………………75 5-3-2 XPS元素擴散分析…………………………………………………79 第六章 結論…………………………………………………………………………80 參考文獻……………………………………………………………………………..83

    [1]R.Steven, 2nd, “Textbook on Zirconia” Magnesium Electron, New York, P38 (1983).
    [2]吳姿慧,“以共濺鍍法製備固態氧化物燃料電池之镍-氧化鋯陽極薄膜研究”,國立台灣科技大學材料科技研究所碩士學位論文,民國九十五年五月。
    [3]J. F. Baumard and P. Abelard, “In Science and Technology of Zirconia II,” N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, Volume 555 (1984).
    [4]S. Somiya, N. Yamamolo, and H. Yanagida., “Science and Technology of Zirconia Ⅲ,” American Ceramic Society, Westerville, Volume 24 (1988).
    [5]N. Bonanos, R. K. Slotwinski, B. C. H. steel, andE. P. Butler “High ionic conductivity in polycrystalline tetragonal Y2O3-ZrO2,” Journal of Material Science Letters, Volume 3, 45 (1984).
    [6]S. P. Jiang, “固体酸化物形燃料電池用電極及び該電極を有する固体酸化物形燃料電池,” Materials Science and Engineering, A 418,199-210 (2006).
    [7]M. Dokiya, “SOFC System and Technology,” Solid State Ionics, 152-153,383-392 (2002).
    [8]S. J. Lawrence, H. S. Spacil, and D. L. Schroeder, “The solid electrolyte oxygen sensor theory and applications,” Automatica, Volume 5, 633-636(1969).
    [9]R. Chaim, G. Basat, and A. K. Demyanets, “Effect of oxide additives on grain growth during sintering of nanocrystalline zirconia alloys,” Materials Letters, Volume 35, 245-250 (1998).
    [10]R. N. Blumenthal F. S. Brugner and J. E. Gamier, “The Electrical Conductivity of CaO-Doped Nonstoichiometric Cerium Oxide from 700oC to 1500 oC,” Journal of the Electrochemical Society, Volume 120, 1230-37 (1973).
    [11]H. L. Tuller and A. S. Nowick, “Doped Ceria as a Solid Oxide Electrolyte,” Journal of the Electrochemical Society, Volume 122, 255-59 (1975).
    [12]Ishihara, T., Matsuda, H. and Takita, Y. “Doped LaGaO3 Peorvskite Type Oxide as a New Oxide Ionic Conductor,” Journal of the American Chemical Society, Volume 116, 3801 (1994).
    [13]M. Mogensen, T. Lindegaard, U. R. Hansen, G. J. Mogensen. “Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2,” The Electrochemical Society, Volume 141, 2122 (1994).
    [14]H. Yohiro, K. Eguchi, H. Arai, “Ionic conduction and microstructure of the ceria-strontia system,” Solid State Ionics, 21, 37 (1986).
    [15]T. Mori and J. Drennan, “Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes,” Journal of the Electroceramical Society, 17, 749-757 (2006).
    [16]T. Mori, J. Drennan, Y. Wang, G. Auchterlonie, J. G. Li and A. Yago, “Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system,” Science and Technology of Advanced Materials, 4, 213-220 (2003).
    [17]N. Sata, K. Eberman, K. Eberl and J. Maler, “Mesoscopic fast ion conduction in nanometer-scale planer heterostructures,” Nature, 408, 946-949 (2000).
    [18]A. Karthikeyan, C. H. Chang and S. Ramanathan, “High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects,” Applied Physics Letters 89, 183116 (2006).
    [19]A. Peters, C. Korte, D. Hesse, N. Zakharov and J. Janek “Ionic conductivity and activationenergy for oxygen ion transport in superlattices-The multilayer system CSZ(ZrO2+CaO)/Al2O3,” Solid State Ionics 178, 67 (2007).
    [20]I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley, D. H. Lowndes. “Nanoscale effects on the ionic conductivity in highly textured YSZ thin films,” Solid State Ionics 176, 1319–1326 (2005).
    [21]N. Schichtel, C. Korte, D. Hesse and J. Janek , “Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies,” Physical Chemical Chemistry Physics 11, 3043 (2009).
    [22]J. G. Barriocanal, A. R. Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, and S. J. Pennycook, J. Santamaria, “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures,” Science, Volume 321, 676 (2008).
    [23]X. Guo, “Comment on 〝Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures〞,” Science, Volume 324 (2009).
    [24]X. Guo, E. Vasco, S Mi, K. Szot, E. Wachsaman ,R. Waser, “Ionic conduction in zirconia films of nanometer thickness,” Acta Materialia, 53, 5161-5166 (2005).
    [25]S. M. Kim, J.W. Son, K. R. Lee, H. Kim, H. R. Kim, H. W. Lee, J.H. Lee, “Substrate effect on the electrical properties of sputtered YSZ thin films for co-planar SOFC applications ,” Journal of the Electroceramical Society, Volume 24,153–160 (2010).
    [26]W. C. Maskell, “Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors,” Journal of Physics E: Scientific Instrum, 20, 1156(1987).
    [27]張玉清,宋隆裕,李英正,楊淑卿,陶惟翰,“微型氧氣感測器簡介”,科儀新知,第二十卷,第五期,第84-89 頁,民國88 年4 月。
    [28]D. Yuan and F. A. Kroger, “Stabilized Zirconia as an Oxygen Pump,” Journal of the Electroceramical Society, 116, 5, 594 (1969).
    [29]A. Asada, H. Yamamoto, M. Nakazawa, H. Osanai, “Limiting Current Type of Oxygen Sensor with High Performance,” Sensors and Actuators B, 312(1990).
    [30]T. Takeuchi, “Oxygen sensors,” Sensors and Actuators B, 14, 109(1998).
    [31]W. H. Sutton, “Microwave Processing of Ceramics Materials,” American Ceramic Society Bulletin, Volume 68, pp. 376-386(1989)
    [32]B. Meng, J. Booske, R. Cooper, and S. Freeman, “Microwave Absorption in NaCl Crystals with Various Controlled Defect onditions,” Materials Research Society Symposia Proceedings, Volume 347, pp. 467-72 (1994).
    [33]J. A. Eastman, K. E. Sickafus, J. D. Katz, S. G. Boeke, R. D. Blake, C. R. Evans, R. B. Schwarz, and Y. X. Liao, “Microwave intering of Nanocrystalline TiO2,” Japanese Journal of Applied Physics, Volume 38, pp. 173-78 (1990).
    [34]D. L. Johnson, “Microwave Heating of Grain Boundaries in Ceramics,” Journal of American Ceramics Society, Volume 74, No. 4, pp. 849-50(1991).
    [35]M. A. Janey and H. D. Kimrey, “Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics,” Mater. Research Society Symposia Proceedings, Volume 189, pp. 215-27 (1990).
    [36]H. D. Kimrey, J. O.Kiggans, M. A. Janney and R. L. Beatty, “Microwave Sintering of Zirconia-Toughened Alumina Composites,” Material Research Society Symposia Proceedings, Volume 189, pp. 243-55 (1990).
    [37]M. A. Janney and H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” British Ceramic Transactions, Volume 1 (II B), 919-924 (1998).
    [38]M. A. Janney, H. D. Kimrey, M. A. Schmidet and J. O. Kiggans, “Grain Growth in Microwave-Annealed Alumina,” Journal of American Ceramics Society, Volume 74, No. 4, pp. 1675-81 (1991).
    [39]M. A. Janney, C. L. Calhoun, and H. D. Kimery, “Microwave Sintering of Zirconia-8 mol% Yttria,” British Ceramic Transactions, Volume 21, pp. 311-318 (1991).
    [40]M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8 mol% Yttria,” Journal of American Ceramics Society, Volume 75, No. 2, pp.341-346 (1992).
    [41]M. A. Janney, H. D. Kimrey, nd J. O. Kiggans, “Microwave Processing of Ceramics, Guidelines Used at the Oak Ridge National Laboratory,” in Microwave Processing of Material III, Material Research Society Symposia Proceeding, Volume 269, pp. 173-85 (1992).
    [42]M. A. Janney, M. L. Jackson, and H. D. Kimery, “Microwave Sintering of ZrO2-12 mol% CeO2,” in Microwaves: Theory and Application in Materials Processing II, Ceramic Transactions, Volume 36, pp. 101-108 (1993).
    [43]J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave,” Journal of Material Research, Volume 7, No.2 pp, 451-501(1992).
    [44]J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave, Processing of Crystalline Solids,” in Microwaves: Theory and Application Materials Processing, Ceramic Transactions, Volume 32, pp.285-192 (1991).
    [45]T. T. Meek, “Proposed Model for the Sintering of a Dielectric in a Microwave Field,” Journal of Material Science Letters, Volume 6, pp. 638-640 (1987).
    [46]V. K. Varadan, Y. Ma, A. Lakhtakia and V. V. Varadan, “Microwave Sintering of Ceramics,” in Microwave Processing of Materials I, Material Research Society Symposia Proceeding, Volume 124, pp. 45-57 (1988).
    [47]F. T. Ciacchi, S. A. Nightingale, and S. P. S. Badwal, “Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity,” Solid State Ionics, 86-88, 1167-1172 (1996).
    [48]D. D. Upadhyaya, A. Ghosh, K. R. Gurumurthy, and R. Prasad, “Microwave sintering of cubic zirconia,” Ceramics International ,27,415-418 (2001).
    [49]D. D. Upadhyaya, A. Ghosh, G. K. Dey, R. Prasad and A. K. Sur, “Microwave sintering of zirconia ceramics,” Journal of Material Science, 36 (2001).
    [50]S. A. Nightingale, H. K. Worner and D. P. Dunne, “Microstructural Development during the Microwave Sintering of yttria-zirconia ceramics,” Journal of American Ceramic Society, 80, 394-400 (1997).
    [51]A. Goldstein, N. Travitzky, A. Singurindy and M. Kravchik,“Direct Microwave sintering of yttria-stabilized zirconia at 2.45GHz,” Journal of European Ceramic Society, 19, 2067-2072 (1999).
    [52]羅文志,“氧空缺控制對氧化鋯離子導電率之研究”國立台灣科技大學材料科技研究所碩士論文,民國94年7月。
    [53]史美倫,“交流阻抗譜原理及應用”北京國防工業出版社,(2001)。
    [54]O. Yamamoto, Y. Takeda, N. Imanishi. T. Kawahara, G. Q. Shen, M. Mori. and T. Abe, “Electrical and Mechanical Properties of Zirconia-Alumina Composite Electrolyte,” Journal of Materials Science, 437-44 (1993).
    [55]S. Jou and T. W. Chi. “Thin film of tetragonal zirconia(3Y-TZ) deposition by reactive sputtering,” Vacuum , 81, 911-919 (2007).
    [56]J.Chastain, R.C. King, Handbook of X-ray Photoelectron Spectroscopy.
    [57]G.V. Samsonov (ed.), The Oxide Handbook (IFI/Plenum, New York, 1982), p 202.

    無法下載圖示 全文公開日期 2016/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE