簡易檢索 / 詳目顯示

研究生: 陳鍵瑋
CHEIN-WEI CHEN
論文名稱: 平板受平面邊緣力的應力及自由振動分析
Stress and Free Vibration Analysis of Rectangular Plates Subjected to Arbitrary In-Plane Edge Loads
指導教授: 楊條和
Tyau-Her Young
口試委員: 徐茂濱
Mau-Pin Hsu
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 應力平板平面邊緣力
外文關鍵詞: in-plane edge loads, stress, rectangular plates
相關次數: 點閱:269下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

平板廣泛應用在各工程領域中,如航太、船舶與土木等,因此本文探討平板受平面邊緣力的應力及自由振動分析。文中假設平板為均質等向性的材質,平板四邊邊界均為簡支撐端,而平板在軸向的兩對邊承受平面邊緣力。首先利用牛頓第二運動定律得到平板的運動方程式,接著利用傅立葉級數來展開施加於平板邊界上的邊緣力,並利用艾律氏應力函數(Airy’s stress function)疊加法求得平板應力分布的確切解,接著利用ANSYS建立有限元素分析模型進行平板受平面邊緣力之應力分析,經由此模擬求得結果與本文求解出的應力分布作比對,接著利用葛樂金法得到離散化的運動方程式,由此求出平板之自然頻率與模態,最後利用自由振動結果,去探討平板在不同受力型式下的挫曲負荷。從數值結果可知,隨著邊緣力作用寬度越窄,作用區域愈往邊緣中央移動,挫曲負荷愈大。


Plates are widely used in various engineering fields, such as aerospace, marine and civil engineering, etc. Therefore, stress and free vibration analyses of rectangular plates subjected to arbitrary in-plane edge loads are investigated in this thesis. Assume that the material property of the plate is homogeneous and isotropic. The plate is simply-supported on all edges, and in-plane edge loads are arbitrarily distributed on two opposite edges. First, the equations of motion of the plate are derived by Newton’s second law. Next the edge loads of the plate is expanded into a Fourier series, and the exact solution of the in-plane stress filed is obtained rigorously by using a superposition of Airy’s stress functions. An finite element model is established, and the in-plane stress simulation of the plate is carried out by ANSYS. The results obtained by ANSYS are compared with the stress distribution obtained by the present work. Then the governing equation of the lateral free vibration of the plate is discretized by Galerkin’s method, from which the natural frequencies and the corresponding model shapes of the plate are determined. Finally by the results of the free vibration analysis, the buckling loads of the plate subjected to different types of edge loads are investigated in this thesis. Numerical results show that the narrower the width of the edge loads is, and the more the application area of the edge loads moves toward the middle of the edges, the greater the buckling load is.

論文摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機與目的 10 第二章 理論分析及研究方法 12 2.1 平板運動方程式之推導 13 2.2平面應力分析 15 2.3側向自由振動分析 27 2.4有限元素法模擬 29 2.4.1前處理模組 29 2.4.2分析計算模組 30 2.4.3 後處理器模組 31 第三章 數值分析與討論 38 3.1平面應力分析 38 3.2 側向自由振動分析 48 第四章 結論與未來研究建議 93 4.1結論 93 4.2未來展望 94 參考文獻 95

[1] C. W. Lee, “A three-dimensional solution for simply supported thick rectangular plates,” Nuclear Engineering and Design, vol. 6, pp. 155-162, 1967.
[2] L. Y. Chung, H. Reisman, “Dynamics of rectangular plates,” International Journal of Engineering Science, vol. 7, pp. 93-113, 1969.
[3] H. Reisman, J. E. Greene, “Forced Motion of Circular Plates,” Div. of Interdisciplinary Studies and Research, School of Engineering, AFOSR Report no. 67- 0565, 1967.
[4] H. Reisman, Y. C. Lee, “Forced Motions of Rectangular Plates,” Theoretical and Applied Mechanics, vol. 3, pp. 1-69, 1968.
[5] D. A. Simons, A. W. Leissa, “Vibrations of rectangular cantilever plates subjected to in-plane acceleration loads,” Journal of Sound and Vibration, vol. 17, pp. 407-422, 1971.
[6] S. Srinivas, A. K. Rao, “An exact analysis of the free vibrations of simply-supported viscoelastic plates,” Journal of Sound and Vibration, vol. 19, pp. 251–259, 1971.
[7] R. E. Ekstrom, W. L. Booker, “Vibration analysis of plate stability,” International Journal of Mechanical Sciences, vol. 14, pp. 701-707, 1972
[8] A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, vol. 31, pp. 257-293, 1973.
[9] K. T. S. R. Iyengar, P. V. Raman, “Free vibration of rectangular plates of arbitrary thickness with symmetrically distributed point supports along the edges,” Journal of Sound and Vibration, vol. 54, pp. 229-236, 1980.
[10] H. P. Lee, S. P. Lim, S. T. Chow, “Free vibration of Composite rectangular Plates with Cutouts,” Composite and Structures, vol. 8, pp. 63-81, 1987.
[11] K. Takahashi, Y. Konishi, “Dynamic stability of a rectangular plate subjected to distributed in-plane dynamic force,” Journal of Sound and Vibration, vol. 123, pp. 115-127, 1988.
[12] A. W. Leissa, E. F. Ayoub, “Vibration and buckling of a simply supported rectangular plate subjected to a pair of in-plane concentrated forces,” Journal of Sound and Vibration, vol. 127, pp. 155-171, 1988.
[13] S. H. shen, “Postbuckling behavior of rectangular plates under combined loading,” Thin-Walled Structures, vol. 8, pp. 203-216, 1989.
[14] H. P. Lee, S. P. Lim, “Free vibration of Isotropic and Orthotropic Square Plates with square Cutouts Subjected to In-plane Forces,” Composite and Structures, vol. 43, pp. 431-437, 1992.
[15] N. Tahan, M. N. Pavlović, M. D. Kotsovos, “Single fourier series solutions for rectangular plates under in-plane forces, with particular reference to the basic problem of collinear compression. Part 1: Closed-form solution and convergence study,” Thin-Walled Structures, vol. 53, pp. 291-303, 1993.
[16] N. Tahan, M. N. Pavlović, M. D. Kotsovos, “Single fourier series solutions for rectangular plates under in-plane forces, with particular reference to the basic problem of colinear compression. Part 2: Stress distribution,” Thin-Walled Structures, vol. 53, pp. 1-26, 1993.
[17] K. M. Liew, Y. Xiang, S. Kitipornchi, “Transverse Vibration of Thick Rectangular Plates-1. Comprehensive Set of Boundary Conditions,” Computers and Structures, vol. 49, pp. 1-29, 1993.
[18] X. Wang, C. W. Bert, A. G. Striz, “Differential Quadrature Analysis of Deflection, Buckling, and Free Vibration of Beams and Rectangular Plates,” Computers and Structures, vol. 48, pp. 473-479, 1993.
[19] P. J. Deolasi, P. K. Datta, “Parametric instability characteristics of rectangular plates subjected to localized edge loading (compression or tension),” Computers & Structures, vol. 54, pp. 73-82, 1995.
[20] A. K. L. Srivastava, P. K. Datta, A. H. Sheikh, “Buckling and vibration of stiffened plates subjected to partial edge loading,” International Journal of Mechanical Sciences, vol. 45, pp. 73-93, 2003.
[21] J. H. Kang, W. Leissa, “Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges,” International Journal of Solids and Structures, vol. 42, pp. 4220-4238, 2005.
[22] X. Wang, X. Wang, X. Shi, “Differential quadrature buckling analyses of rectangular plates subjected to non-uniform distributed in-plane loadings,” Thin-Walled Structures, vol. 44, pp. 837-843, 2006.
[23] P. Jana, K. Bhaskar, “Stability analysis of simply-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions,” Thin-Walled Structures, vol. 44, pp. 507-516, 2006.
[24] X. Wang, L. Gan, Y. Wang, “A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses,” Journal of Sound and Vibration, vol. 298, pp. 420-431, 2006.
[25] X. Wang, L. Gan, Y. Zhang, “Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides,” Advances in Engineering Software, vol. 39, pp. 497-504, 2008.
[26] Y. G. Liu, M. N. Pavlović, “A generalized analytical approach to the buckling of simply-supported rectangular plates under arbitrary loads,” Engineering Structures, vol. 30, pp.1346-1359, 2008.
[27] X. Wang, J. Huang, “Elastoplastic buckling analyses of rectangular plates under biaxial loadings by the differential quadrature method,” Thin-Walled Structures, vol. 47, pp. 14-20, 2009.
[28] H. Akhavan, Sh. H. Hashemi, H. R. D. Taher, A. Alibeigloo, Sh. Vahabi, “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis,” Computational Materials Science, vol. 44, pp. 951-961, 2009.
[29] Y. F. Xing, B. Liu, “Exact solutions for the free in-plane vibrations of rectangular plates,” International Journal of Mechanical Sciences, vol. 51, pp. 246–255, 2009.
[30] B. Liu, Y. F. Xing, “Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates,” European Journal of Mechanics A/Solids, vol. 30, pp. 383–395, 2011.
[31] R. Daripa, M. K. Singha, “Stability analysis of composite plates under localized in-plane load,” Thin-Walled Structures, vol. 47, pp. 601–606, 2009.
[32] H. Akhavan, Sh. H. Hashemi, H. R. D. Taher, A. Alibeigloo, Sh. Vahabi, “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis,” Computational Materials Science, vol. 44, pp. 951–961, 2009.
[33] O. Civalek, A. Korkmaz, C. Demir, “Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges,” Advances in Engineering Software, vol. 41, pp. 557-560, 2010.
[34] S. K. Panda, L. S. Ramachandra, “Buckling of rectangular plates with various boundary conditions loaded by non-uniform in-plane loads,” International Journal of Mechanical Sciences, vol. 52, pp. 819-828, 2010.
[35] Y. Tang, X. Wang, “Buckling of symmetrically laminated rectangular plates under parabolic edge compressions,” International Journal of Mechanical Sciences, vol. 53, pp. 91-97, 2011.
[36] L. Dozio, “On the use of the Trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates,” Thin-Walled Structures, vol. 49, pp. 129-144, 2010.
[37] G. Ikhenazen, M. Saidani, A. Chelghoum, “Finite element analysis of linear plates buckling under in-plane patch loading,” Journal of Constructional Steel Research, vol. 66, pp. 1112-1117, 2010.
[38] A. V. Lopatin, E. V. Morozov, “Buckling of the SSCF rectangular orthotropic plate subjected to linearly varying in-plane loading,” Composite Structures, vol. 93, pp. 1900-1909, 2011.
[39] T. Q. Bui, M. N. Nguyen, Ch. Zhang, “Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method,” Engineering Analysis with Boundary Elements, vol. 35, pp. 1038-1053, 2011.
[40] D. T. Huang, “Effects of constraint, circular cutout and in-plane loading on vibration of rectangular plates,” International Journal of Mechanical Sciences, vol. 68, pp. 114-124, 2013.
[41] A. J. Wilson, S. Rajasekaran, “Elastic stability of all edges simply supported, stepped and stiffened rectangular plate under Biaxial loading,” Applied Mathematical Modeling, (In Press, Corrected Proof), Available online 5 July 2013.
[42] S. A. Eftekhari, A. A. Jafari, “A mixed method for free and forced vibration of rectangular plates,” Applied Mathematical Modeling, vol. 36, pp. 2814-2831, 2012.

無法下載圖示 全文公開日期 2018/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE