簡易檢索 / 詳目顯示

研究生: 許夏雪
Melisa Kosasi
論文名稱: Numerical Simulations of an Excavation in Central Jakarta by Hypoplasticity Model with Consideration of Recent Stress History
Numerical Simulations of an Excavation in Central Jakarta by Hypoplasticity Model with Consideration of Recent Stress History
指導教授: 鄧福宸
FU-CHEN TENG
熊彬成
Bin-Chen (Benson) Hsiung
口試委員: 李安叡
An-Jui Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 131
中文關鍵詞: Hypoplasticity modelrecent stress-historydeep excavationJakarta clay
外文關鍵詞: Hypoplasticity model, recent stress-history, deep excavation, Jakarta clay
相關次數: 點閱:181下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • An advanced soil constitutive model is needed to simulate real soil behavior in a complex
    situation, such as in urban area. In this study, hypoplasticity model for clay (HC model)
    which capable of modeling small strain stiffness non-linearity, recent stress-history
    effects, and large-strain asymptotic for clays was thus used. Numerical simulations of a
    non-symmetric deep excavation in central Jakarta using HC model in consideration of
    pre-excavation recent stress history were carried out in this study. The excavation site is
    located at Dukuh Atas MRT station in central Jakarta. The excavation, with a road
    embankment on one side, was constructed in medium-stiff Jakarta clay using the topdown
    construction method. 2D finite element (FE) analyses was adopted for numerical
    simulations. Soil properties used for excavation simulations were determined from
    laboratory and field tests. Those properties were also calibrated for HC model. Numerical
    analysis of excavation case at Dukuh Atas station was also simulated by using MohrColoumb
    (MC). Output results of numerical simulation using MC and HC model were
    evaluated. Measurements of wall deflections during the construction were also corrected
    and presented for comparison purpose to simulation results.


    An advanced soil constitutive model is needed to simulate real soil behavior in a complex
    situation, such as in urban area. In this study, hypoplasticity model for clay (HC model)
    which capable of modeling small strain stiffness non-linearity, recent stress-history
    effects, and large-strain asymptotic for clays was thus used. Numerical simulations of a
    non-symmetric deep excavation in central Jakarta using HC model in consideration of
    pre-excavation recent stress history were carried out in this study. The excavation site is
    located at Dukuh Atas MRT station in central Jakarta. The excavation, with a road
    embankment on one side, was constructed in medium-stiff Jakarta clay using the topdown
    construction method. 2D finite element (FE) analyses was adopted for numerical
    simulations. Soil properties used for excavation simulations were determined from
    laboratory and field tests. Those properties were also calibrated for HC model. Numerical
    analysis of excavation case at Dukuh Atas station was also simulated by using MohrColoumb
    (MC). Output results of numerical simulation using MC and HC model were
    evaluated. Measurements of wall deflections during the construction were also corrected
    and presented for comparison purpose to simulation results.

    ABSTRACT ................................................................................................................ i ACKNOWLEDGEMENTS ........................................................................................ ii TABLE OF CONTENT ............................................................................................ iii LIST OF TABLES ..................................................................................................... v LIST OF FIGURES ................................................................................................... vi LIST OF SYMBOLS AND ABBREVIATIONS ....................................................... ix CHAPTER 1 INTRODUCTION ............................................................................. 1 1.1 Background ......................................................................................................... 1 1.2 Research objectives ............................................................................................. 2 1.3 Thesis structure ................................................................................................... 2 CHAPTER 2 LITERATURE REVIEW................................................................... 5 2.1 Introduction ........................................................................................................ 5 2.2 Characteristic of Wall Deformation Induced by Excavation ................................ 5 2.3 Hypoplasticity model .......................................................................................... 8 2.4 Correction of Inclinometer Reading .................................................................. 10 2.5 Recent stress history .......................................................................................... 11 CHAPTER 3 JAKARTA MRT SYSTEM ............................................................ 14 3.1 Introduction ...................................................................................................... 14 3.2 Deep Excavation of Jakarta MRT at Dukuh Atas station (CP106) ..................... 15 3.3 Inclinometer Readings....................................................................................... 18 CHAPTER 4 SITE EXPLORATION AND CHARACTERIZATION OF JAKARTA MRT PROJECT ....................................................................................................... 21 4.1 Introduction ...................................................................................................... 21 4.2 Literature Review on Geotechnical Characteristics of Jakarta Soil..................... 21 4.2.1 Topography Setting .................................................................................. 21 4.2.2 Structural Geology of Jakarta Basin .......................................................... 22 4.2.3 Ground Condition in Central Jakarta ........................................................ .25 4.3 Characteristic of volcanic soil ........................................................................... 27 4.4 Subsurface Exploration ..................................................................................... 34 4.4.1 Stratigraphic Profile.................................................................................. 35 4.4.2 Observed Groundwater Table ................................................................... 36 4.4.3 Standard Penetration Test (SPT-N) ........................................................... 37 4.4.4 Cone Standard Penetration Test (CPT) ............................................................. 39 4.5 Laboratory Test ................................................................................................. 40 4.5.1 Index Properties ....................................................................................... 41 4.5.2 Compressibility ........................................................................................ 42 4.5.3 Permeability and Hydraulic Conductivity ................................................. 44 4.5.4 Isotropic consolidation parameters ........................................................... 46 4.5.5 Critical State Strength Parameters ............................................................. 46 4.5.6 Intergranular Strain Parameters................................................................. 48 4.5.7 Undrained Shear Strength Parameters ....................................................... 49 4.5.8 Soil Modulus ............................................................................................ 51 4.6 Evaluation of sample disturbance ...................................................................... 52 4.7 Calibration Parameters ...................................................................................... 54 4.7.1 Isotropic consolidation parameters calibration .......................................... 54 4.7.2 Shear strength parameters calibration ....................................................... 60 CHAPTER 5 NUMERICAL SIMULATION FOR A NON-SYMMETRIC EXCAVATION ....................................................................................................... 64 5.1 Introduction ...................................................................................................... 64 5.2 Input Parameters ............................................................................................... 64 5.2.1 Soil Parameters ......................................................................................... 64 5.2.2 Structure Parameters ................................................................................. 66 5.3. Numerical model configuration ......................................................................... 67 5.3.1 Geometrical model ................................................................................... 67 5.3.2. Simulation method for the embankment................................................... 69 5.4. Numerical simulation results ............................................................................. 72 5.4.1. HC-model Method 1 ................................................................................ 73 5.4.2. HC-model Method 2 ............................................................................... .76 5.4.3. HC-model Method 3 ................................................................................ 80 5.4.4. MC-model Method 1 ............................................................................... 83 5.4.5. Comparison and discussion...................................................................... 85 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS .......................... 91 6.1. Summary of Research Objectives ...................................................................... 91 6.2. Conclusions ...................................................................................................... 91 6.3. Recommendations ............................................................................................. 92 REFERENCES....................................................................................................... R-1 APPENDIX ............................................................................................................ A-1

    Abidin, H. Z., Andreas, H., Gumilar, I., Wibowo I. R. R. (2015). “On correclation between urban development, land subsidence and flooding phenomena in Jakarta.” Proc. IAHS 370, 15-20.
    Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda. Y., Pohan, Y. E., Deguchi, Y. (2011). “Land subsidence oj Jakarta (Indonesia) and its relation with urban development.” Nat. Hazards 59 1753.
    Aila, W. (2016). Establishment of Geotechnical Properties and 3D Numerical Models for Deep Excavation in Central Jakarta. (Master), National Taiwan University of Science and Technology, Taipei, Taiwan.
    Andersen, A., & Kolstad, P. (1979). The NGI 54-mm samplers for undisturbed sampling of clays and representative sampling of coarser materials. Paper presented at The International Conference on Soil Sampling, Singapore.
    Arboleda-Monsalve L. G., Teng F.-C., Kim T. and Finno R. (2017). “Numerical Simulation of Triaxial Stress Probes and Recent Stress-History Effects of Compressible Chicago Glacial Clays.” J. Geotech. Geoenv. Eng., 10.1061/(ASCE)GT.1943-5606.0001684, 04017029.
    Atkinson, J. H., Richardson, D., and Stellabrass, S. E. (1990). “Effect of recent stress history on the stiffness of overconsolidated soil.” Geotechnique, 40(4), 531-540
    Avanti, A. (2013). Numerical Analyses of Jakarta MRT Deep Excavation Project. (Master), National Taiwan University of Science and Technology, Taipei, Taiwan.
    Becker, D. R., Crooks, J. H. A., Been, K., and Jefferies., M. G. (1987). Work as criterion for determining in-situ & yield stresses clays. Can. Geotech. J. 24, 549-564.
    Cho, W., (2007). “Recent stress history effects on compressible Chicago glacial clay.” Ph.D. thesis, Northwestern Univ., Evanston, IL.
    Clayton, C. R. I., Matthews, M. C., and Simons, N. E. (1995). Site Investigation
    Clough, G. W., & O’Rourke, T.D. (1990). Construction-induced movements in situ walls, design, and performance of earth retaining structure. ASCE Special Publication, 25, 439-470.
    Coduto, D. P. (2001). Foundation design : principles and practices (2nd ed.) Upper Saddle River, N.J.: Prentice Hall.
    Do, T.-N. (2015). a Study of Stability of Deep Excavations in Clay with Consideration of a Full Elastoplastic Support System. (Ph.D.), National Taiwan University of Science and Technology, Taipei, Taiwan.
    Finno, R. J., and Kim, T. (2012). “Effects of stress path rotation angle on small strain responses.” J. Geotech Geoenviron. Eng., 10.1061/(ASCE)GT.1943-5606.0000612, 526-534.
    Firmansyah. I., (2011). Simplified Soil Profiles dan Daya Dukung Fondasi Tiang di Jakarta. Retrieved from irawanfirmansyah.wordpress.com
    Firmansyah, I., & Sukamta, D. (2000). Common Practice Basement Construction in Jakarta-Indonesia. ACF Symposium Technical Report, 28-39.
    Herle, I., Kolymbas, D. (2004) Hypoplasticity for soils with low friction angles. Computers and Geotechnics, 31, 365-373.
    Houston, W. N., and Mitchell, J. K. (1969). Property interrelationships in sensitive clays. Journal of the Soil Mechanics and Foundations Division (American Society of Civil Engineers), 95 (SM4), 1037-1062. Proceedings Paper 6666, July.
    Hsiung, B. B. C., & Hwang, R. N. (2009). Correction of inclinometer readings for movement at tips. Geotechnical Engineering, 40(2), 39-48.
    Hwang, R. N., & Moh, Z. C. (2007). Deflection paths and reference envelopes for diaphragm walls in The Taipei Basin. Journal of GeoEngineering, 2(1), 1-12.
    Jacquet, D. (1990). Sensitivity to remoulding of some volcanic ash soils in New Zealand. Engineering Geology, 28, 1-25.
    JRA. (2002). Specification for Highway and Bridges, Part IV. Tokyo, Japan.
    Junus Dai, and P. M. Driessen. (1972). A general orientation preceeding the resumption of clay mineralogical studies at the soil research institute, Bogor, Indonesia. 2nd ASEAN Soil Conference, Jakarta, Indonesia.
    JWRMS (1994a) Jabotabek Water Resources Management Study. Final report, vol. 6, annex 10: Groundwater Resources. Ministry of Public Works, Directorate of Water Resources Development, Indonesia.
    Kolymbas, D. (1991). An outline of hypoplasticity. Archive of Applied Mechanics, 61, 143-151.
    Lenvain, J., D. Mulyadi, and A. Abdurachman. (1972). On the construction methods of a motorway embankment by a sensitive volcanic clay. Proc. Conf. On Clay Fills, London, 149-156.
    Lesniewski, R. (n.d.) Jakarta administrative map. Retrieved from https://www.dreamstime.com/stock-illustration-jakarta-administrative-map-special-capital-region-flag-image71843389
    Makarim, C. A. (2005). Amblasan, Penurunan (Settlementent), dan Kegagalan konstruksi di Jakarta, presentation file.
    Mana, A. I. And Clough, G. W. (1981). Prediction of movements for braced cut in clay. Journal of Geotechnical Engineering Division. ASCE, 107(6), 759-777.
    Masin, D. (2005). A hypoplastic constitutive model for clays. International Journal for
    Numerical and Analytical Methods in Geomechanics, 29(4):311-336.
    Masin, D. (2014). “Clay hypoplasticity model including stiffness anisotropy.” Geotechnique, 64(3), 232-238.
    Millar, P. 1986 Taranski Brown Ash A Discussion on the Influence of Iron Oxide Bonding on Engineering Performance Ministry of Works and Development, Central Laboratories, Report No. 2-86/8.
    Mohr, E. C. J., and Van Baren, F. A. (1954). Tropical soils. Bruxelles: Editions A. Manteau SA.
    Mrtjkt. (2016). Backfill preparation. Retrieved from https://www.instagram.com/p/BMN9GsBhks3/?taken-by=mrtjkt
    MRT Jakarta. (2016). Retrieved from http://esci-ksp.org/project/mrt-jakarta/
    Niemunis, A. (1996). A visco-hypoplastic model for clay and its FE implementation. In Resultats recents en mechanique des sols et des roches XI Colloque Franco-Polonais, Gdańsk, 1996.
    Niemunis, A. (2002). Extended hypoplastic model for soils. (Habilitation thesis), Ruhr-University, Bochum.
    Niemunis, A., Herle, I. Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2, 279-299.
    Ou, C. Y. (2006). Deep Excavation, Theory and Practice.
    Ou, C. Y., Hsieh, P. G., & Chiou, D. C. (1993). Characteristics of ground surface settlement during excavation. Can. Geotech, J., 30, 758-767.
    PLAXIS 2D [Computer software].
    Rachmadi. (2012). Tunnel for Jakarta MRT Project presentation file. Paper presented at the workshop Teknologi Jembatan dan Terowongan, Bandung.
    Rimbaban, S. P. (1999). Geomorphology in Coast plan Jakarta Bay Project, Coastal Environmental Geology of the Jakarta Reclamation Project and Adjacent Areas. CCOP COASTPLAN case study report, 21-25.
    Rismianto, D., & Mak, W. (1993, 6-9 December). Environmental aspects of groundwater extraction in DKI Jakarta: Changing views. Paper presented at the Proceedings of 22nd Annual Convention of the Indonesian Association of Geologist, Bandung.
    Santagata, M., Germaine, J. T., and Ladd, C. C. (2005). “Factors affecting the initial stiffness of cohesive soils.” J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)1090-0241(2005)131:4(430), 430-441.
    Smith, P. R., Jardine, R. J., and Hight, D. W. (1992). “The yielding of Bothkennar clay.” Geotechnique, 42(2), 257-274.
    Teng F.-C., Arboleda-Monsalve L. G., and Finno R. (2018). “Numerical Simulation of recent stress-history effects on excavation responses in soft clays.” J. Geotech. Geoenv. Eng., 10.1061/(ASCE)GT.1943-5606.0001921.
    Terzaghi, K, Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (3rd ed.). New York: Wiley.
    Wesley, L. D. (1973). “Some basic engineering properties of halloysite and allophane clays in Java, Indonesia.” Geotechnique, 23(4), 471-494.
    Wesley, L. D. (2010). Geotechnical Engineering in Residual Soils.
    Wood, D. M. (1983, December). Index properties and critical state soil mechanics. Paper presented at the Proceedings of the Symposium on Recent Developments in Laboratory and Field Tests and Analysis of Geotechnical Problems, Bangkok.
    von Wolffersdorff, PA. (1996). A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1, 251-271.
    Yong, K. Y. (2015). Learning lessons from the construction of Singapore Downtown Line (DTL). Paper presented at the International Conference and Exhibition on Tunneling and Underground Space (ICETUS 2015), Kuala Lumpur, Malaysia.
    Yong, R. N., Turcott, E. & Maathuis, H. (1995). Groundwater extraction-induced land subsidence prediction: Bangkok and Jakarta case studies. Paper presented at the Proceedings of the Fifth International Symposium on Land Subsidence.

    QR CODE