簡易檢索 / 詳目顯示

研究生: 黃舜暘
Shun-Yang Huang
論文名稱: 諧振式LCL感應功率傳輸系統的研製
Design and Implementation of Resonant LCL Induction Power Transfer Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 吳財福
Tsai-Fu Wu
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 磁場耦合感應功率傳輸零電壓切換諧振式LCL預測型控制
外文關鍵詞: magnetic coupling, inductive power transfer, zero-voltage switching, resonant LCL, predictive control
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一套預測型電壓及電流控制的全橋諧振式LCL感應功率傳輸系統。主電路分為兩級,前級為全橋諧振式LCL轉換器,後級為降壓式轉換器。經由調整功率元件的責任週期,改變輸出的電壓或電流,達到定電壓或定電流的輸出。文中繞製兩個圓盤型繞組,透過磁場耦合的方式達成感應功率傳輸。本文使用德州儀器公司所生產的TMS320F2808數位信號處理器作為控制核心,執行預測型控制法則,藉由調整權重因子得到比較傳統比例積分器更好的輸出響應。最後,研製一套輸出功率為210W的諧振式LCL感應功率傳輸系統。實測結果說明,本文所研製的系統,在一、二次側繞組距離為10公分,滿載時轉換效率約達83%。相關的實測說明本文研製的結果,推廣到工業界的可行性。


    This thesis implements a predictive voltage and current control for full-bridge, resonant LCL induction power transfer systems. The main circuit includes two stages: the first stage is a full-bridge resonant LCL converter, and the second stage is a buck-converter. By adjusting the duty cycle of the buck-converter, the output voltage or output current is adjusted to reach a constant output voltage or current. Two circular windings are implemented to induce the primary voltage into secondary side through the magnetic coupling windings.
    A digital signal processor, TMS320F2808, manufactured by Texas Instruments, is used as a control center to execute the predictive control algorithms. By adjusting the weighting factor, better responses than the traditional PI control can be obtained. Finally, a 210W, resonant LCL, inductive power transfer proto-type system has been implemented. Experimental results validate the proposed system which provides 83% efficiency at a 10cm air-gap between the two coupling windings. Experimental results validate the feasibility of applying the proposed method to industry in the future.

    目錄 中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 符號索引 X 第一章 緒論 1 1.1 背景 1 1.2 文獻回顧 2 1.3 論文大綱 7 第二章 耦合感應線圈 8 2.1 簡介 8 2.2 功率傳輸系統架構 8 2.3 感應線圈設計介紹 9 2.4 感應線圈等效模型 11 2.5 參數測量 15 第三章 主電路分析 18 3.1 簡介 18 3.2 電路架構 18 3.3 工作原理 19 3.4 全橋電路 25 3.5 諧振式LCL電路 27 3.5.1 增益分析 30 3.5.2 架構比較 31 3.6 感應耦合線圈 32 3.6.1 二次補償電路 34 3.7 橋式全波整流電路 36 3.8 降壓式轉換器 39 第四章 預測型控制器設計 44 4.1 簡介 44 4.2 系統的動態模型 45 4.3 預測型控制器 51 4.3.1 電壓預測型控制 52 4.3.2 電流預測型控制 59 第五章 系統研製 65 5.1 簡介 65 5.2 硬體電路 67 5.2.1 主電路架構 67 5.2.2 閘極驅動電路 73 5.2.3 電壓偵測電路 74 5.2.4 電流偵測電路 75 5.2.5 過電流保護電路 75 5.2.6 電源電路 77 5.2.7 數位訊號處理器 78 5.3 軟體架構 80 5.3.1 主程式 80 5.3.2 中斷程式 82 第六章 實測結果 85 6.1 簡介 85 6.2 實測 87 第七章 結論與未來研究方向 102 7.1 結論 102 7.2 未來研究方向 103 參考文獻 104

    參考文獻
    [1] S. Liu, R. Mai, L. Zhou, Y. Li, J. Hu, Z. He, and Z. Yan, "Dynamic Improvement of Inductive Power Transfer Systems With Maximum Energy Efficiency Tracking Using Model Predictive Control: Analysis and Experimental Verification," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 12752-12764, Dec. 2020.
    [2] C. Cai, J. Wang, Z. Fang, P. Zhang, M. Hu, J. Zhang, L. Li, and Z. Lin, "Design and Optimization of Load-Independent Magnetic Resonant Wireless Charging System for Electric Vehicles," IEEE Access, vol. 6, pp. 17264-17274, 2018.
    [3] H. Feng and S. M. Lukic, "Reduced-Order Modeling and Design of Single-Stage LCL Compensated IPT System for Low Voltage Vehicle Charging Applications," IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3728-3739, April 2020.
    [4] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, "Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems," IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 191-200, Jan. 2014.
    [5] H. Hao, G. A. Covic, and J. T. Boys, "An Approximate Dynamic Model of LCL-T-Based Inductive Power Transfer Power Supplies," IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5554-5567, Oct. 2014.
    [6] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, "An Inductive and Capacitive Integrated Coupler and Its LCL Compensation Circuit Design for Wireless Power Transfer," IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4903-4913, Sept.-Oct. 2017.
    [7] V. R. K. Kanamarlapudi, B. Wang, N. K. Kandasamy, and P. L. So, "A New ZVS Full-Bridge DC–DC Converter for Battery Charging With Reduced Losses Over Full-Load Range," IEEE Transactions on Industry Applications, vol. 54, no. 1, pp. 571-579, Jan.-Feb. 2018.
    [8] J. Liu, Q. Deng, W. Wang, and Z. Li, "Modeling and Control of Inverter Zero-Voltage-Switching for Inductive Power Transfer System," IEEE Access, vol. 7, pp. 139885-139894, 2019.
    [9] X. Zhang, T. Cai, S. Duan, H. Feng, H. Hu, J. Niu, and C. Chen, "A Control Strategy for Efficiency Optimization and Wide ZVS Operation Range in Bidirectional Inductive Power Transfer System," IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 5958-5969, Aug. 2019.
    [10] Z. Pantic, S. Bai, and S. M. Lukic, "ZCS LCC-Compensated Resonant Inverter for Inductive-Power-Transfer Application," IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3500-3510, Aug. 2011.
    [11] F. Grazian, T. B. Soeiro, P. V. Duijsen, and P. Bauer, "Auto-Resonant Detection Method for Optimized ZVS Operation in IPT Systems With Wide Variation of Magnetic Coupling and Load," IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 326-341, 2021.
    [12] T. Mishima, "A Time-Sharing Current-Fed ZCS High-Frequency Inverter-Based Resonant DC–DC Converter With Si-IGBT/SiC-SBD Hybrid Module for Inductive Power Transfer Applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 506-516, March 2020.
    [13] N. X. Bac, D. M. Vilathgamuwa, and U. K. Madawala, "A SiC-Based Matrix Converter Topology for Inductive Power Transfer System," IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4029-4038, Aug. 2014.
    [14] M. Kiani, U. Jow, and M. Ghovanloo, "Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission," IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, pp. 579-591, Dec. 2011.
    [15] C. Park, S. Lee, G. H. Cho, and C. T. Rim, "Innovative 5-m-Off-Distance Inductive Power Transfer Systems With Optimally Shaped Dipole Coils," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 817-827, Feb. 2015.
    [16] J. Kim, D. H. Kim, J. Choi, K. H. Kim, and Y. J. Park, "Free-Positioning Wireless Charging System for Small Electronic Devices Using a Bowl-Shaped Transmitting Coil," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 791-800, Mar. 2015.
    [17] H. Jafari, M. Moghaddami, and A. I. Sarwat, "Foreign Object Detection in Inductive Charging Systems Based on Primary Side Measurements," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 6466-6475, Nov.-Dec. 2019.
    [18] S. Y. Chu, X. Zan, and A. T. Avestruz, "Electromagnetic Model-Based Foreign Object Detection for Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 100-113, Jan. 2022.
    [19] J. P. W. Chow, N. Chen, H. S. H. Chung, and L. L. H. Chan, "An Investigation Into the Use of Orthogonal Winding in Loosely Coupled Link for Improving Power Transfer Efficiency Under Coil Misalignment," IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5632-5649, Oct. 2015.
    [20] W. Zhao, X. Qu, J. Lian, and C. K. Tse, "A Family of Hybrid IPT Couplers With High Tolerance to Pad Misalignment," IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3617-3625, March 2022.
    [21] Z. Cheng, Y. Lei, K. Song, and C. Zhu, "Design and Loss Analysis of Loosely Coupled Transformer for an Underwater High-Power Inductive Power Transfer System," IEEE Transactions on Magnetics, vol. 51, no. 7, pp. 1-10, July 2015.
    [22] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, "Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers," IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1581-1592, May 2014.
    [23] C. S. Wang, G. A. Covic, and O. H. Stielau, "Investigating an LCL load resonant inverter for inductive power transfer applications," IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 995-1002, July 2004.
    [24] C. Xia, Q. Sun, X. Li, and A. P. Hu, "Robust mu-Synthesis Control of Dual LCL Type IPT System Considering Load and Mutual Inductance Uncertainty," IEEE Access, vol. 7, pp. 72770-72782, 2019.
    [25] T. Saha, A. C. Bagchi, and R. A. Zane, "Analysis and Design of an LCL–T Resonant DC–DC Converter for Underwater Power Supply," IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6725-6737, June 2021.
    [26] P. Liu and L. Chien, "A High-Efficiency Integrated Multimode Battery Charger With an Adaptive Supply Voltage Control Scheme," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6869-6876, Aug. 2018.
    [27] M. J. Neath, A. K. Swain, U. K. Madawala, and D. J. Thrimawithana, "An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1523-1531, March 2014.
    [28] A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos, and M. Huemer, "A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power," IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6338-6348, Nov. 2015.
    [29] H. Lee and M. Ghovanloo, "A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 3, pp. 213-224, June 2013.
    [30] Y. Yang, W. Zhong, S. Kiratipongvoot, S. Tan, and S. Y. R. Hui, "Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control," IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6351-6360, July 2018.
    [31] Z. Zhou, L. Zhang, Z. Liu, Q. Chen, R. Long, and H. Su, "Model Predictive Control for the Receiving-Side DC–DC Converter of Dynamic Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 8985-8997, Sept. 2020.
    [32] M. Budhia, J. T. Boys, G. A. Covic, and C. Huang, "Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318-328, Jan. 2013.
    [33] C. Zheng, H. Ma, J. S. Lai, and L. Zhang, "Design Considerations to Reduce Gap Variation and Misalignment Effects for the Inductive Power Transfer System," IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6108-6119, Nov. 2015.
    [34] W. Zhang and C. C. Mi, "Compensation Topologies of High-Power Wireless Power Transfer Systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4768-4778, June 2016.
    [35] V. Shevchenko, O. Husev, R. Strzelecki, B. Pakhaliuk, N. Poliakov and N. Strzelecka, "Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application," IEEE Access, vol. 7, pp. 120559-120580, 2019.

    QR CODE