簡易檢索 / 詳目顯示

研究生: 王俊仁
Jun-Ren Wang
論文名稱: 適用於太陽能部分遮蔭情形之兩段式最大功率追蹤技術
A Two-Stage Maximum Power Point Tracking Technique for Photovoltaic Generation Systems Considering Partial Shading
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 太陽能發電系統部分遮蔭情形全域最大功率追蹤Alpha因子擾動觀察法
外文關鍵詞: Photovoltaic generation systems (PGSs), partial shading conditions (PSCs), global maximum power point tracking (GMPPT), alpha factor perturb and observe method
相關次數: 點閱:604下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能發電系統經常發生部分遮蔭情形,使得太陽能電池之功率-電壓特性曲線呈現多峰現象,因此開發一適用於部分遮蔭情形之全域最大功率追蹤技術顯得更為重要。對此,本文提出以兩階段法為基礎之全域最大功率追蹤技術,在第一階段根據模擬所得之結果追蹤至最大功率點附近,第二階段以Alpha因子擾動觀察法改善追蹤之精確度,並將操作點穩定控制在最大功率點上。
為了驗證本文所提方法之正確性與可行性,實際完成一600 W之最大功率追蹤電路。在遮蔭情形下,模擬結果與決定型杜鵑鳥搜尋法相比,在上升時間方面改善了34.67%,在穩定時間方面改善了25.18%,在平均追蹤電能損失方面減少35.68%,且穩態追蹤精確度可達99.99%。實測結果證明本文所提方法在不同遮蔭樣式下皆能追蹤到全域最大功率點,且在所測試的五種遮蔭樣式下其穩態追蹤精確度皆高於99.00%。


Photovoltaic generation systems (PGSs) frequently experience partial shading conditions (PSCs). Because PSCs will result in multiple peak values on the power-to-voltage characteristic curve, developing an algorithm that facilitates tracking global maximum power point (GMPP) is crucial. Therefore, a two-stage GMPP tracking algorithm is proposed in this thesis. In the first stage, the vicinity of the maximum power point is obtained by performing extensive simulations, while during the second stage, alpha factor perturb and observe (P&O) method is utilized to improve the tracking accuracy and stably control the operating point at the maximum power point.
To verify the correctness and feasibility of the proposed MPPT algorithm, a 600 W prototyping circuit is constructed. The simulation results compared with the deterministic cuckoo search (CS) method under partial shading conditions show that the rising time is shortened by 34.67%, the settling time is improved by 25.18%, the average tracking power loss is reduced by 35.68%, and the 99.99% steady-state tracking accuracy can be achieved. Experimental results also validate that the proposed method can obtain GMPP under different shading patterns, and above 99.00% steady-state tracking accuracy has been reached on the specific five PSC test cases.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 文獻探討 4 1.4 本文提出之最大功率追蹤系統架構 5 1.5 論文大綱 6 第二章 太陽能電池 8 2.1 太陽能電池簡介 8 2.2 太陽能電池原理 9 2.3 太陽能電池種類 10 2.4 太陽能電池電氣特性 12 第三章 太陽能發電系統最大功率追蹤技術 18 3.1 最大功率追蹤技術簡介 18 3.2 傳統最大功率追蹤技術 19 3.2.1 開路電壓法 19 3.2.2 短路電流法 19 3.2.3 擾動觀察法 20 3.2.4 增量電導法 21 3.3 部分遮蔭之最大功率追蹤技術 23 3.3.1 粒子群演算法 23 3.3.2 類神經網路法 24 3.3.3 分段搜尋法 25 3.3.4 決定型杜鵑鳥搜尋法 27 第四章 最大功率追蹤系統硬體架構 30 4.1 升壓式轉換器 31 4.2 升壓式轉換器連續導通模式 31 4.3 升壓式轉換器元件設計 35 第五章 最大功率追蹤系統韌體架構 41 5.1 數位訊號處理器 41 5.2 所提出之最大功率追蹤技術 44 5.2.1第一階段估測法 44 5.2.2 Alpha因子擾動觀察法 51 5.3 韌體主程式架構 55 第六章 模擬與實驗結果 57 6.1 實驗設備與環境介紹 57 6.2 性能量測標準 61 6.3 遮蔭情形之模擬與比較 62 6.4 均勻照度情形之模擬與比較 73 6.5 實測結果與探討 79 第七章 結論與未來展望 85 7.1 結論 85 7.2 未來展望 86 參考文獻 87

[1] Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21,net/.
[2] F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
[3] A. Loukriz, M. Haddadi and S. Messalti, “Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems,” ISA Transactions, Vol. 62, pp. 30-38, 2015.
[4] Q. Mei, M. Shan, L. Liu, and Josep M. Guerrero, “A novel improved variable step-size incremental-resistance MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 6, pp. 2427-2434, 2011.
[5] K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” IEE Proceedings - Generation, Transmission and Distribution, Vol. 142, No. 1, pp. 59–64, 1995.
[6] G. J. Yu, Y. S. Jung, J. Y. Choi and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” Solar Energy, Vol. 76, Iss. 4, pp. 455–463, 2004.
[7] Y. T. Chen, Z. H. Lai, and R. H. Liang, “A novel auto-scaling variable
step-size MPPT method for a PV system,” Solar Energy, Vol. 102, pp.
247-256, 2014.
[8] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. N. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Transactions on Power Electronics, Vol. 26, No. 4, pp. 1010-1021, 2011.
[9] M. Killi and S. Samanta, “Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5549-5559, 2015.
[10] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 963–973, 2005.
[11] D. Sera, T. Kerekes, R. Teodorescu and F. Blaabjerg, “Improved MPPT method for rapidly changing environmental conditions,” IEEE International Symposium on Industrial Electronics, pp. 1420–1425, 2006.
[12] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, Vol. 22, No. 2, pp. 439–449, 2007.
[13] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized maximum power point tracker for fast-changing environmental conditions,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2629-2637, 2008.
[14] Y. Mahmoud, M. Abdelwahed and E. F. El-Saadany, “An enhanced MPPT method combining model-based and heuristic techniques,” IEEE Transactions on Sustainable Energy, Vol. 7, No. 2, pp. 576-585, 2016.
[15] 呂昱德,「適用於太陽能發電系統之兩段式最大功率追蹤技術」,國立台灣科技大學電機工程系碩士學位論文,民國106年7月。
[16] 彭柏瑞,「以太陽能特性方程式為基礎之快速最大功率追蹤技術研製」,國立台灣科技大學電機工程系博士學位論文,民國106年12月。
[17] Y. J. Wang and P. C. Hsu, “Analytical modelling of partial shading and different orientation of photovoltaic modules,” IET Renewable Power Generation, Vol. 4, Iss. 3, pp. 272-282, 2010.
[18] M. Seyedmahmoudian, S. Mekhilef, R. Rahmani, R. Yusof and E. T. Renani,“Analytical modeling of partially shaded photovoltaic systems,” Energies, Vol. 6, pp. 128-144, 2013.
[19] R. Bradai, R. Boukenoui, A. Kheldoun, H. Salhi, M. Ghanes, J-P. Barbot and A. Mellit,“Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions,” Applied Energy, Vol. 199, pp. 416-429, 2017.
[20] N. Gokmen, E. Karatepe, F. Ugranli and S. Silvestre, “Voltage band based global MPPT controller for photovoltaic systems,” Solar Energy, Vol. 98, pp.322-334, 2013.
[21] 林建璋,「基於軟計算法之太陽能發電系統全域最大功率追蹤法則研究」,國立台灣科技大學電機工程系碩士學位論文,民國107年7月。
[22] 王智彥,「考量部分遮陰之太陽光伏發電系統全域最大功率追蹤」,國立中山大學電機工程學系碩士學位論文,民國106年8月。
[23] 陳敬孝,「基於分段搜尋法之太陽能全域最大功率追蹤」,國立台灣科技大學電機工程系博士學位論文,民國104年7月。
[24] 倪鵬濤,「適用於太陽能發電系統之決定型杜鵑鳥搜尋最大功率
追蹤法」,國立台灣科技大學電機工程系碩士學位論文,民國105
年 7 月。
[25] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays – A PSO approach,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 2011.
[26] K. Ishaque and Z. Salam, “A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 8, pp. 3195-3206, 2013.
[27] 顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」,全威圖書,民國98年10月。
[28] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」,東華書局,民國99年5月。
[29] M. G. Villalva, J. R. Gazoli and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, Vol. 24, No. 5, pp. 1198-1208, 2009.
[30] J. J. Schoeman and J. D. Wyk, “A simplified maximal power controller for terrestrial photovoltaic panel arrays,” IEEE Power Electronics Specialists conference, pp. 361–367, 1982.
[31] M. A. S. Masoum, H. Dehbonei and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage- and current-based maximum power-point tracking,” IEEE Transactions on Energy Conversion, Vol. 17, No. 4, pp. 514–522, 2002.
[32] J. S. Kumari and Ch. S. Babu, “Comparison of maximum power point tracking algorithms for photovoltaic system,” International Journal of Advances in Engineering & Technology, Vol. 1, Iss. 5, pp. 133-148, 2011.
[33] R. W. Erickson and D. Maksmovic, “Fundamentals of power electronics,” 2nd Edition, Kluwer Academic Publishers, 2001.
[34] 王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
[35] 吳義利,「切換式電源轉換器:原理與實用設計技術(實例設計導向)」,文笙書局,民國104年9月。
[36] Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,” Available at: http://www.microchip.com.
[37] Microchip Technology Inc., “dsPIC30F/33F Programmer’s Reference Manual,” Available at: http://www.microchip.com.
[38] 曾百由,「dsPIC 數位訊號控制器原理與應用MPLAB C30開發實務」,宏友圖書開發股份有限公司,民國98年12月。
[39] 李奇樵,「新型變動步階擾動觀察法於最大功率追蹤之研究與實現」,國立台灣科技大學電機工程系碩士學位論文,民國103年 7月。

無法下載圖示 全文公開日期 2024/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE